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ABSTRACT  

  

This paper is the practical application of theory learned and a 

great amount of additional learning. The goal was a device that is capable of 

monitoring temperature in different areas at a given time. Then compare that 

data to historic stored data to determine if and which windows should be open 

or closed to improve the temperature in the house built at Center for 

Regenerative Studies at California State Polytechnic University, Pomona, 

California. Much of the learning was finding what chips and compatible 

devices are available that will perform the function desired. They can not be 

to expensive, since I had to buy everything, and allow me to program them to 

complete the task desired. The goal changed to be a learning experience in 

building a basic computer system. Do to inexperience, there was no 

feasibility study completed before beginning design and implementation. The 

assumption was made that almost anything is possible with digital electronic 

technology and software. The biggest problem was locating the hardware that 

was available and that would interface with other components to perform the 

functions desired. The resulting implementations of the project was designed 

as a direct result of learning theories/concepts and was implemented more 

from the theories/concepts than from solving a problem. Do to these factors, 

this paper is written mostly in a chronological order. The chronological 

order will help the reader understand the results. 
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CHAPTER 1 

INTRODUCTION 

 

The prospect of deciding what to do for a senior project was 

horrendous. I knew I wanted my project to involve digital hardware, since I 

have a hardware emphasis of the computer science and computer engineering 

program at the University of La Verne. I thought of many possibilities such 

as having a computer control a model train system or collect and route the 

audio signals of a stereo sound system via USB. After many such thoughts, I 

decided that I did not want to spend time making something that only a 

techno-weenie like me would want, fabulous yet barely useful. I wanted to 

make something that someone actually wants and could use. Working to solve a 

problem that someone needs solving would also motivate me better. 

I made my decision for pragmatism at a good time. My opportunity 

came during the winter interim. This was just before it was time sign-up for 

my senior project. I was in an introductory biology class in which there were 

a few field trips. I was looking for opportunities on each field trip. During 

a field trip at the Center for Regenerative Studies at California State 

Polytechnic University, Pomona, I heard that some things there were automated 

and some more things were going to be automated. Automation is a killer 

application for computer systems. What made this a real opportunity was that 

the Center for Regenerative Studies was a place of experimentation, which 

means experimenting with a prototype would be tolerated. I asked the tour 

guide to talk with a person who is involved with the automation. They gave me 

the center’s number to call. The secretary was able to reach the person whom 

I needed to talk with. 

The center serves as a part of many science departments. Despite 

the many academic majors involved, the center is focused on finding and 

developing ways to have humans live in ways that are less harmful on the 



 

 

2 

environment. Students gain hands-on experience working on many ecological 

projects such as fish farming, plankton growing, and finding ways to conserve 

energy (placing solar panels on poles that rotate to track the sun). Students 

bring the expertise of their field of study to help on projects. Civil 

engineering students help construct things other than the buildings which the 

students inhabit. Biology students, work on organically growing plants and 

fish farming. Students live and work at the center, usually for two years, as 

part of an academic program. Beside the projects, students also do 

maintenance duties such as taking turns to cook for the group of residing 

students, and cleaning the buildings (Korthof ). 

The Center for Regenerative Studies wants as little pollution as 

possible, so no air conditioners or heaters are used. To compensate for the 

lack of active temperature regulation, their buildings are designed with 

superior insulation. The building, with which I became interested, was built 

partially into a hillside. The earth from the hill mostly covers one side of 

the building. The walls of the building are made of thick concrete. 

The building’s windows are the only way to heat and cool the 

building. There are rows of small glass windows in the roof to let in 

sunlight, which keeps the buildings from being too cold like an underground 

basement. In the winter, the windows stay closed and let sunlight in to 

create a greenhouse effect and warm up the building in the daytime. In the 

summer, the windows in the roof are opened to allow the hot air to rise 

through the roof, which is replaced, by air that has been cooled by the 

coolness of the concrete walls and the hillside. Normal convection causes the 

warmer air to rise. The building has one large main room and many small 

rooms. The main room has the ceiling windows and many of the lower windows. 

The small rooms also have windows that can open and close. 

The person at the Center for Regenerative Studies whom I finally 

spoke with was William Korthof. He was a civil engineering student who was 
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also an electronic hobbyist, one of many students who live at the center. A 

project on which he was working was automating the opening and closing of 

windows on a building to regulate the interior temperature. He had already 

begun installing motors on the windows. He appeared to me as a person of 

action, which gave me more confidence in collaborating with him. This was 

offset by the fact the center refused to give much support, financial or 

otherwise. The center did not make any requests in regards with that project. 

It was an open-ended project with the only constraints being minimal cost to 

the center and not interfering with other projects. The objective was to keep 

the building’s temperature more comfortable without consuming a substantial 

amount of electricity. 

Mr. Korthof even installed a control feature, having each motor 

wired to a limiter, which sets the range of a window’s movement. When a 

window reaches a given position, the limiter cuts the power to the motor. The 

limiter prevents the windows from opening too wide. The windows were each 

originally installed with a crank that opened the windows with a set of 

levers. If a window opens too wide, the levers are placed in a position that 

makes closing the window difficult. 

He also bought a small power converter to power the motors from 

the standard utility power. The center had made technologies such as 

electrical devices a low priority. The center is largely focused on more 

manual methods that tend to pollute less and require less development of 

things like power plants, long-distance power lines, etceteras. The power 

converter that Mr. Korthof could afford was only powerful enough to power one 

or two motors at a time. To operate many motors from one power converter, he 

devised a plan to set a chain of relays, wired in series, that would run the 

motors one at a time. When a limiter turns off one motor, a relay would turn 

on the next motor. 
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The limiters make controlling the motorized windows more 

feasible. Whatever or whoever opens or closes the windows does not have to 

worry about leaving the motors run after the windows have reached the open or 

closed position and running the risk of wearing down the motors. The limiters 

combined with the relays would allow a two-position mechanism (a switch, 

relay, and etceteras) to control a group of windows. The mechanism could be 

set to the given open or close position and left there until the windows need 

to be placed in another position. 

What Mr. Korthof had not yet planned, was how to automate the 

opening and closing of windows. He only placed a few switches to manually 

switch the windows open and closed. He noted that people would tend to forget 

to open and close the windows until the building becomes too hot or cold. 

This would be unacceptable for most people who are accustom to convenient 

temperature regulation, and thus would not achieve the center’s goal develop 

a living area that can become popular with most people while using very 

little resources. Opening the ceiling windows to vent the accumulated heat 

out during a hot summer day might not be sufficient to cool the building. The 

proactive step of allowing the cold early-morning air drift inside the 

building might be needed to achieve sufficient amount of coolness for the 

day. One complication of taking this step would be determining how cold the 

building should be allowed to become to compensate for the heat of the day. 

This determination is as much human preference for comfort as it is 

technical. A regular thermostat could not perform this type control. Regular 

thermostats are design to regulate temperature by using heaters and air 

conditioners. A common configuration for older thermostats is to have a blue 

slider and a red slider moved to various positions to indicate the desired 

temperature range. When the temperature becomes too cold, the heater 

operates. When the temperature becomes too hot, the air conditioner operates. 
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Using windows to regulate temperature does not work the same way 

as using heaters and air conditioners. Heaters and air conditioners add and 

remove heat from a mass of air, respectively. Opening windows only allows air 

to convect heat into or out of the building, heat convection to a cooler 

place. Thus, a special thermostat is needed for the building. The thermostat 

needs to be capable of monitor the outside and inside temperatures. The 

thermostat needs to take proactive measures to compensate for very hot and 

very cold days. Neither Mr. Korthof nor I knew of any thermostats that could 

perform such sophisticated functions. We concluded that a smart thermostat is 

needed and one should be invented and built. 

Mr. Korthof had the knowledge of how to wire motors and switches, 

but he did not know about programming and hardware design. I asked him if I 

could design a smart thermostat for the building. With my computer 

software/hardware education, I had a decent chance to successfully create a 

thermostat with programmable behavior. Since the window control project was a 

low priority, he was able to have me create the smart thermostat without any 

approval from the center’s administration or the university’s faculty. 

The next thing that Mr. Korthof and I did was determined what 

features we would like the smart thermostat to have. To have the thermostat 

perform proactive measures with reasonable accuracy, the thermostat should 

store inside and outside temperature readings for a few days and predict the 

temperatures for the next 24 hours. The thermostat’s controls or menus should 

be as simple as possible to be more compatible the center’s culture. Some 

performance might be sacrificed to eliminate some fancy controls or menu 

options, which would probably not get used by people at the center. The 

options we definitely wanted were setting the desired high and low 

temperature preferences for the day and night, respectively. More controls 

maybe thought about as the thermostat was being designed, built, and 

programmed. The building’s main room was the top priority for temperature 
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control. If possible, the small rooms would also be regulated as separate 

zones that have their own temperature preference settings. These features 

were tentative and subject to the successes and failures of the 

hardware/software design process. 

This project became a learning experience in making a complete 

digital computer system. Though the thermostat is incomplete and is far 

simpler than many existing computer systems. It has all the components of a 

digital computer system, input (buttons), output (LED display), input-output 

processor (DSP), central processing unit (DSP), and random-access memory 

(DSP). 
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CHAPTER 2 

INITIAL PROJECT DESIGN 

 

I started with the advice, often given by people who are buying a 

personal computer, that one should consider what they wanted a system to do 

(software) before they choose the appropriate components (hardware). Thus, I 

focused on the algorithms for determining when to close and open windows 

first. I first made crude assumptions: open windows on summer nights to 

collect cool air for summer day, open windows on winter days to release 

excess heat caused by greenhouse effect. These assumptions develop a general 

idea of what should happen. The question of figuring and predicting the 

optimum times to open and close windows arose. I thought that such algorithms 

needed to be sophisticate and involved artificial intelligence. Books that 

cover the topic of artificial intelligence were difficult to read and 

comprehend. I could only understand some general ideas. Due to my 

inexperience, I had to abandon artificial intelligence and focus on the 

hardware of my project. The process of thinking about algorithms did 

influence my hardware design. 

To perform the algorithms, the circuitry had to be designed that 

was capable of performing complex algorithms. The types of such circuitry 

that I learned in school were microprocessors, synchronous sequential 

circuits, and algorithmic state machines. Finite state machines and 

algorithmic state machines are difficult to use for complex algorithms. A, 

synchronous sequential circuit must be redesigned every time an algorithm 

needs to be changed, since its design is based on state tables (Mano 220-50). 

Every step in an algorithm needs to be translated into state and input 

conditions, a very arduous task. Algorithmic state machines are less 

difficult. Their designs are based on flow charts, which are more natural for 

implementing algorithms. They can be designed with an EPROM microchip at the 
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core of the design. With a good design, a change in an algorithm would only 

require a change in the bits being stored in the EPROM. Still, each step in 

the algorithm needs to be translated into bits stored on the EPROM (Mano 307-

36). 

I was familiar with the 7400 logic series and programmable 

microchips, which were used in my digital logic classes. I was also becoming 

familiar with digital signal processors (DSPs); I found Texas Instruments’ 

web and was able to order free information that came on CD-ROMs. The 

criterion for selecting the type of microchip was based on how complex the 

logic should be and what the hardware could handle. The thermostat needed to 

perform elaborate algorithms so it could manage the building’s temperature. 

7400 logic series microchips are a tempting choice. They are very 

cheap and are very well known. I had no problems looking for their 

specifications. Yet, I realized that it would take numerous 7400 microchips 

to store instructions and execute instructions. I built a simple arithmetic 

logic unit as a laboratory exercise of CMPN 280 class. It took twelve 7400 

series microchips to build. A gigantic mess of wires and microchips would 

form and envelop the project with errors. I wanted to have as few parts as 

possible to minimize hardware assembly problems. 

Programmable microchips are a better choice than 7400 series 

microchips (Mano 153-54). One programmable microchip could emulate several 

7400 microchips. Despite that, the ones that ULV had still did not have 

enough integration. From my experience in using it in advanced architecture 

class, CMPN 480 I knew that it has limited capabilities. The microchip that I 

used in class did not have enough input/output lines and control the logic to 

operate as a traffic light controller. It would take at least a few of the 

microchips to build a processor, not including memory for program and data. I 

did not look for other programmable microchips that might have greater 

capabilities, since I found a better solution, a digital signal processor. 
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Processors are more complex than 7400 logic and programmable 

chips. They have a steeper learning curve as I have discovered. Their 

overwhelming advantage is the algorithms that they are running can be changed 

easily. In processors, algorithms are run as a sequence of machine language 

instructions, which exists simply as a series of ones and zeroes that causes 

the processor to perform operations. Fortunately, programmers can write 

algorithms in assembly language instead of machine language. Assembly 

provides programmer’s with symbolic names and numbers in place of binary bits 

(Mazidi 50-77). Better still, many processors have a version of “C language”, 

a high level language, available for them. I felt “C language” would be the 

best for writing the algorithms for the thermostat. It is easier to write 

programs with “C language” than with machine language, yet it is highly 

optimized. “C language” still must be compiled into machine language to have 

programs run; thus the “C language” compiler must be designed for the 

processor that is being used (Deitel 6.13). 

Before I signed-up for my senior project, I searched Texas 

Instruments’ web site and ordered their reference CD’s, since they have a 

good reputation as a leader in technology. I wanted to see what types of 

hardware existed before I try to propose a project. I did not want to make a 

project proposal and then be unable to find the hardware for the brain. The 

microchips that seemed to be most promising were Texas Instrument’s digital 

signal processors. These are complete processors that come with many 

features, such as built-in RAM. Using a real processor would eliminate the 

design task of creating a processor out of 7400 series and programmable 

microchips. 

While I was thinking about artificial intelligence, I started to 

look at Texas Instruments’ application notes that involved artificial 

intelligence and fuzzy logic. The one note that really caught my attention 

was “What is Fuzzy Logic? An Overview of the Latest Control Methodology” by 
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Tomothy A. Adcock. Fuzzy logic produces a range of output values, instead of 

just of two values of crisp logic: off and on (Adcock 2). Most thermostats 

operate with crisp logic. This creates the hit and misses situations of 

heaters over heating by a few degrees and air-conditioners over cooling by a 

few degrees. After extensive analyses, I realized that my project was 

significantly different from this application and I could not figure out how 

to apply it to my project. The application note discussed the fuzzy logic of 

a thermostat that operates a variable-speed fan to control temperature. My 

thermostat was to predict the daily temperature changes and control long-term 

temperatures instead of the immediate temperature. The note explained that 

the calculations needed for fuzzy logic could be easily handled by their DSP 

microprocessors, which have multiplier accumulators. I searched a month to 

find a source to purchase their DSP microprocessors, before I found a DSP 

starter kit. The kit comes with the processor already mounted to a board that 

contains the circuits needed to operate the processor and simple software 

needed to assemble and load code. This made my project much more manageable. 

One of the first aspects of the thermostat would be the user 

interface. Inspired by a digital thermostat that is in my home, I felt having 

a display of alphanumeric characters was important. Users need to know what 

temperatures the thermostat is reading, what are the current settings of the 

thermostat, and view what they are setting as they press buttons. LED lamps 

that were used in my digital logic classes are good for reading output from 

relatively simple circuits. They are not good for easy reading of more 

complex information, such as time of day, current temperature, and etceteras. 

The user also needs a way to input preferences in the thermostat. The logic 

switches that were used in the digital logic classes were used to input 

binary values and to control digital circuits by sending +5 volts and ground 

signals that are accepted as logic values by the digital circuits. Keyboards 

send binary values to a computer system. One of the thermostats that are in 
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my home has a keypad. Keypads are like keyboards in that they have a matrix, 

which sees a pressed key as a set of numbers. As I have mentioned earlier, 

the thermostat needs to have as simple an interface as possible, thus the 

number of buttons should be kept to a minimum. With a small number of 

buttons, a matrix is not necessary. This Thermostat could use an algorithm 

that is simpler than the algorithms that most computer systems use, since 

there is no matrix to scan. 

When I received the kit, I was overwhelmed by the technical 

information that it came with. The one thing I quickly realized was the 

software simply converts assembly language code into machine language and 

loads it into the DSP microprocessor. Assembly language makes creating the 

complex algorithms needed to determine when to open and close the windows 

vary difficult. I found out that Texas Instruments does make a “C language” 

compiler for that microprocessor that costs $1600. Such a high level language 

is needed to make writing complex algorithms feasible. Do to financial 

constraints, I could not obtain the “C” compiler and start writing fancy 

algorithms thus forcing me to focus on hardware. 

The DSP does not come with input and output devices. The DSP only 

has ports and buses with which to interface (Texas Instruments Tms320c54x Dsp 

Reference Set: Cpu and Peripherals ). The DSP also lacks a real-time clock 

with which to know current day and time of day. Computer platforms, such as 

microcomputers, include a processor(s), system buses, video output, keyboard, 

real-time clock, and etceteras. The “C language” was designed for such 

complete systems. It was necessary to add the display, buttons, and real-time 

clock to the DSP system to make it more like common computer systems. If I 

had a “C language” compiler for the DSP, I would still have to write the 

drivers (low level code) for the Stdout (standard output) and Stdin (standard 

input), and Time (real time and processor clock count) libraries to for my 

LED, buttons, and RTC (real-time clock), respectively. (Kernighan 161,242,55-
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56; Texas Instruments 7.4-7.11). Thus, using “C language” would not be as 

advantageous as it would be for a standard computer system.  

When I stopped focusing on fancy programming, I realized that 

putting the thermostat hardware together and trying to get its parts to 

function correctly, would be a project onto itself. The only means of 

electronically measuring temperature that I found were thermistors. 

Thermistors are resisters that change resistance in relation to temperature. 

The voltage being measured depends on the circuit in which a thermistor is 

placed. Using a thermistor would involve using the A/D converter of the DSP 

starter kit, using the serial port of the DSP microprocessor, and calibrating 

the readings into actual temperature measurements (Rizzoni 715). I did not 

have the experience to perform those tasks without great effort. I was 

looking for thermometers with digital parallel outputs. 

As I thought more about how the thermometers might be wired to 

the thermostat at the Center, I realized that having thermometers send 

temperature bits in parallel would cause problems. Parallel signal lines 

cannot run the long distances required placing thermometers. Parallel lines 

would develop different propagation delays that would cause bits to not 

arrive at the same time (Rizzoni 767; Mazidi 747-58). I only thought of 

scenarios where only the last few bits would be fluctuating (i.e. 00001100 

and 00001011 might read as 00001111, a 2 bit inaccuracy). Then I realized 

that there are much worst scenarios where several bits can be fluctuating 

(i.e. 00100000 and 00011111 might read as 00111111, a 5 bit inaccuracy). 

While I was looking for thermometers, I also was looking for a 

display. The preferred features for a display would be built-in or add-on 

control circuits (buffers, decoders, and etceteras), to avoid a heinous patch 

wire jungle that I often built in digital logic labs. Decoders are needed to 

select character positions. ASCII decoders are needed to convert ASCII code 

to LED patterns. And, Buffers/memory are needed to store the display 
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characters while the DSP is performing operations other than outputting to 

the display. It is common for LCDs to come with integrated with onboard logic 

circuits to handle ASCII code and placing characters on various positions on 

the display, but their documents confused me. Much later, I realized that I 

misread the document that lead me to not use LCDs. Sometime later, I decided 

to use LEDs. My classes made me familiar with LEDs. Only a resister is needed 

to connect an LED to the output of a TTL microchip. LEDs rarely come with any 

control. I found an assembly system that mounts digit LEDs together to form a 

display line and mounts BCD decoders to the LEDs. That solution was expensive 

and only reduces wiring a little. I could not use LED bulbs for the senior 

project. They would not give me enough feedback information and would create 

an undesirable design. I was depending on the display device to see what is 

happening to the hardware, since the DSP kit’s monitoring program did not 

seem to work. I finally found a alphanumeric LED module that has the built in 

logic circuitry to decode ASCII code and store characters in built-in RAM to 

eliminate the need for extra circuitry for displaying (Hewlett Packard HDSP-

2502) (Hewlett Packard ). 

The one of the features that distinguishes nice digital 

thermostats from simple thermostats, is a clock that is used to turn 

heaters/air-conditioners on and off at scheduled times. The DSP has a timer. 

This timer works in terms of processor clock cycles, not time of day. I 

realized I needed a real-time clock. The preferred features for a RTC would 

be having an output to indicate when it is a certain time, and to set alarms 

for any time down to the minute. I found a RTC with all the desired features 

plus a built-in battery to keep time/alarm settings during power outage, 50 

bytes of general-purpose RAM that can protect important information from 

power outages (Dallas Semiconductor DS1286) (Dallas Semiconductor Ds1286 

Watchdog Timekeeper ). 
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After I found a neat display and clock, I turned my focus toward 

the heart of the thermostat. I realized that the design of how the buttons, 

display, and clock will interact with the DSP microprocessor would be a 

challenge. I forwent designing the connections to motors and thermometers. 
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CHAPTER 3 

PROJECT IMPLEMENTATION 

 

I drew a simple block diagram of the thermostat to brainstorm 

what kind of functional parts are needed. In all the excitement, I overlooked 

the obvious need to think of the basic design of the whole thermostat. 

Fortunately, the components that I have collected were robust and designed 

for reasonably easy implementation. 

Computer systems have three types of lines: address, data, and 

control (Mazidi 882; Mano 385-91). Sometimes, a line will fall into more than 

one category. Intel 8088 has eight lines that function as data and address 

lines 217-222. Many peripherals, such as Hantronix LCDs and Motorola MC146818 

RTC have similar lines (Hantronix "Commands for Character Modules" ; 

Hantronix "Processor Interfacing" ; Motorola Semiconductor 10,17-19). Address 

lines select a location in memory or a peripheral. For most part, address 

lines connect directly to the address lines of memory and other chips. High 

address lines often are connected via a decoder to chip enable pins of memory 

and other chips (Mano 297). Data lines transfer actual data between chips. 

Data lines are connected directly from the processor to peripherals. Control 

lines handle interrupt requests, indicate read or write operations, indicate 

the address space being used, and indicate when valid data or address is on 

the lines. Many control lines connect directly from the processor to 

peripherals, but due to semantics, control lines often have to be combined 

via logic circuits to form new control lines that match a group of 

peripherals (Mazidi 222-23,26-29). I understood the logical implications of 

this, but not the timing aspects. 

With the key components collected, the actual designing process 

could begin. One of first things was figuring what and where the connections 

are on the DSP kit. I roughly knew what the kit’s features were, but not the 
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details. I ran into a problem figuring what each hole is on the DSP kit 

circuit board. These holes are where the other microchips would be connected 

to the DSP. I looked up the board’s diagram in the manuals that came with the 

kit. Finally, I understood what a set of circuit board diagrams were showing 

(Texas Instruments A.1-A.8). The diagrams were schematic diagrams that are 

like pin diagrams done in digital logic classes, with a few important 

differences that confused me. The orientation of components in relation to 

each other is shown and is important, since the DSP kit board was one solid 

piece that could not be re-arranged at-will. Also the DSP has multiple rows 

of holes instead of lines of pins. 

One of first problems was figuring how to have the DSP processor 

respond to the pressing of buttons quickly. If DSP does not respond within a 

fraction a second, a user would let go of the button, and the signal that the 

button made would disappear without being captured for processing. The DSP 

also needed to respond to the RTC’s alarm signal to keep time current or to 

perform a scheduled function promptly. I knew of two methods for monitoring 

peripherals. In one method, called polling, the DSP could periodically check 

the status of the peripherals. The RTC has a bit that indicates if an 

interrupt has occurred. The problem with this method is the intervals for 

checking must be short enough to assure reading each button being press. In 

the other method, called interrupting, for each peripheral that needs to send 

the DSP notices, one of the DSP’s interrupt lines is wired to the 

peripheral’s line that will send the notice signal (Hennessy 567-70). The RTC 

has two interrupts lines for its alarms. The buttons would need logic gates 

to form an interrupt line. I realized that the buttons need to be connected 

to an interrupt pin on the processor and an interrupt service program will 

determine which key is being pressed and give that information to the program 

that was running. A feature, such as interrupting is another reason to choose 

a full-blown processor system. 
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The DSP has three address spaces: program, data and I/O. Program 

and data spaces cover on-chip RAM and ROM. If external memory is connected to 

the DSP, they can also cover the external memory (Texas Instruments 10.1-

10.20). In contrast, I/O space can only cover devices that are external to 

the DSP. That is one reason that I chose to use I/O space for the LED and 

RTC. There is no possibility of confusion between program/data and external 

peripherals. The DSP’s built-in peripherals are accessed via registers that 

are mapped in the beginning of data space, so they are also not covered by 

I/O space (Texas Instruments 8.2-8.9). 

The DSP uses separate control lines for I/O access and external 

memory access. Each of the three addressing spaces has a space select pin 

that changes to ground voltage when its associated space is in use. There are 

two strobe pins, one for program/data memory access and one for I/O access. 

Thus, using the I/O strobe line to enable the LED and RTC operations prevents 

any command other than PORT from affecting them, even if the DSP is set to 

access external memory for program code and data. I looked at the CPU’s I/O 

timing diagrams to figure out what signal I will use to enable the LED and 

RTC for data transfer. After a long series of looks, I spotted the strobe 

signal as being ideal for that usage. I have seen the word strobe used in pin 

diagrams for parallel ports and expansion slots, but I only then realized 

what it does (Mazidi 313-503). 

Another reason for choosing I/O space for the LED and RTC, is the 

lack of choices for timing. Program and data spaces operate as memory access. 

External memory can exist in multiple banks. The DSP has bank-switching 

capabilities that can efficiently handle multiple banks. This feature changes 

the timing characteristics of memory access, creating potential problems. I/O 

space only has the option of using wait-states that lengthen the times from 

when the strobe, space select, and read/write lines change values to when the 
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data values is transmitted. This should have no negative effects for the LED 

and RTC. 

The DSP’s wait states feature only allows more time for address 

and control signals to set up before data is transmitted. The data 

transmission is not lengthened. The address and control lines are not given 

more time after the data transmission. This would help with the fist half of 

the LED’s and RTC’s read/write cycle and with the tri-state buffers if they 

delay button inputs too long. Yet, the second half of the LED’s and RTC’s 

read/write cycle would not be helped. See Figure 11 in appendix C. 

In a processor system, timing becomes an issue due having many 

types of lines. Each of these lines has a timing relationship to each other. 

Address lines activate first to select an I/O component or a region in 

memory. Control lines activate at various times during a cycle to control the 

type of action (read, write, enable a component, indicate data or address 

line status, and etceteras). Data lines activate last when everything else is 

ready and only then does valid data transfers occur. A special control line, 

called strobe, indicates the exact moment when the signals on the data lines 

are reliable and are captured by the device that is reading. After that, most 

or generally all lines de-activate in reverse order from which they 

activated. Many standard components follow this timing principle, which 

allowed the LED and RTC to be connected to the DSP with only simple logic 

circuits mitigating some lines (Mano 60-61). 

The principle mentioned is applicable to systems using separate 

address and data lines. The timing principle for systems that have address 

and data multiplexed together onto the same lines is different. That 

principle need not be explored, since the LED, RTC, and DSP have separate 

data and address lines. 

Compared to processor issues, what I learned in college was 

simpler. In the digital logic lab classes, the most complex sequential 
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circuit assembled had several shift registers that were connected together 

via a few buses. In class the issue of timing was discussed simply in terms 

of the time taken for a signal to travel, not dependent on relationship. The 

control lines were manually operated via logic switches. Data and control 

switches are set and then the clock pulse switch is manually pushed. The 

registers constantly output data except during a transition, and during an 

operation the registers would simply receive input from a bus. 

The LED and the RTC comply with a popular standard for memory 

interface. There are no dedicated strobe lines. The read and write lines also 

act as strobe lines. This standard applies to read/write lines that are one 

line or two separate lines (Intel 2; Mano 294-95; Mano 60-61). The DSP does 

not completely comply with this standard make wiring more difficult. 

To connect the LED’s and RTC’s control lines to the DSP, their 

timing and other characteristics must first be analyzed. Unlike the DSP, the 

LED and RTC have no strobe lines. Unlike the DSP, they have separate read and 

write enable lines. These facts prevent straight connections of control lines 

from the DSP to the LED and RTC. Fortunately, the LED’s and RTC’s lines are 

very similar, thus allowing a single design solution to operate both. The 

read and write enable lines of the LED and RTC have the same timing 

characteristics as the DSP’s I/O strobe line (Texas Instruments 10.16; 

Hewlett Packard 6-7; Dallas Semiconductor 9). See Figures 9 and 10 in 

Appendix C. 

I wondered if the LED and RTC needed tri-state buffers to protect 

the data pins. If I do need tri-state buffers, would I be able to select them 

and still have enough time to transmit the data? 

All the hardware issues confused me. Luckily, I finally found an 

experienced digital/analog hardware engineer, Mr. Richard Burrows, to look at 

the technical documents of the CPU, DSP, and RTC. The engineer pointed out 

several important things to me. Since the LED and RTC have data pins that act 
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as input and output, they must have built-in tri-state function. The strobe 

signal of the CPU is prolonged when the CPU is instructed to lengthen its I/O 

timing. With those facts known, he concluded that I could wire the LED’s and 

RTC’s data pins directly to the CPU’s data pins. The CPU’s strobe pin can be 

wired to a decoder with strobe input (Texas Instruments 2). Given that a 

decoder can route a strobe signal, the DSP’s address lines can select the 

read and write enable lines of the LED and RTC (Burrows ). See Figure 8 in 

Appendix C. Just as with standard computer systems, the DSP cannot operate 

the LED and RTC concurrently nor perform read operations and write operations 

concurrently. Thus, this is a suitable design solution. The only disadvantage 

is that the address to read from a location in the LED or RTC is different 

from the address to write to the same location in the LED or RTC. 

Given that a decoder can route a strobe signal, the DSP’s address 

lines can select the read and write enable lines of the LED and RTC. Just as 

with standard computer systems, the DSP cannot operate the LED and RTC 

concurrently nor perform read operations and write operations concurrently. 

Thus, this is a suitable design solution. The only disadvantage is that the 

address to read from a location in the LED or RTC is different from the 

address to write to the same location in the LED or RTC. 

As I examined the timing information for the CPU, LED, and RTC; I 

realized that the CPU operates significantly faster than the LED and RTC. 

There is a potential problem for the LED and RTC to be unable to successfully 

transmit and receive data from the CPU. 

Synchronous circuits have a signal, clock, which controls the 

holding of bits in flip-flops. A flip-flop is a collection of logic gates 

that can hold a logic signal (Mano 210-18). By changing the frequency of the 

clock signal, the rate at which bits are captured and held can be control. It 

is this concept, which gave me the idea of attempting to change the clock 
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speed of the DSP to solve my timing problem of my different components’ clock 

speeds. 

To solve the problem of the DSP running faster than the LED and 

RTC, I seek to manipulate the clock signals that regulate each of them. The 

LED and RTC can output their clock signals or be overridden by external clock 

signals. The RTC has the lowest clock frequency of all the components, and 

thus the other components could run from it. Unfortunately, the DSP came 

soldered to a crystal oscillator. To override its clock, I would need to 

break the oscillator circuit on the DSP’s board, which could result in 

damaging the DSP’s board, since the board’s micro-size parts makes such an 

alteration extremely difficult. I would only have implemented this solution 

after other options failed. 

Another way to make data transfer between the CPU and peripherals 

reliable, is to have a handshaking process. The LED and RTC that I have 

chosen do not have any pins that will give feedback, so I can’t perform 

handshaking (Hewlett Packard ; Dallas Semiconductor Ds1286 Watchdog 

Timekeeper ). As my computer architecture book indicates, asynchronous serial 

transfer would be the simplest, since it has the strobe signal merged with 

the data and there is only on data line instead of several. I found LEDs and 

RTCs that have serial data interfaces in my catalog. I can’t do that too, 

since the CPU’s serial port operates synchronously, thus it does not produce 

start and stop bits. I could connect a UART to the CPU, but that would 

probably be as complicated as connecting the LED and RTC directly with the 

CPU. 

Many Intel processors (486 and 586) can operate at multiples of 

an external clock speed (Mazidi 638-39). The DSP has a similar feature. The 

DSP has three clock mode pins that determine what multiple of its internal or 

an external oscillator. These pins are accessible from the solder holes in 

the board. When I started to wire the thermostat, I tried to change the 
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voltages that appear at the DSP’s clock mode pins. The unfortunately, one of 

the pins would not change to voltage that I apply to the corresponding 

soldering hole. 

The next piece of hardware I needed to add would was the buttons 

that would be used for user input. As with wiring the LED and RTC to the DSP, 

there are design considerations for interfacing buttons into the thermostat. 

I connected the buttons to DSP data lines that are not being used by the LED 

or RTC. I figured this would eliminate the need for adding tri-state buffers 

to control the buttons’ connection to the data bus. 

Unlike a common logic gate, tri-state buffers have a high-

impedance state that effectively acts as a broken circuit. When many 

components share a common line, they use tri-state buffers to have only one 

component connect to the line at a time (Mano 420). 

I used a group of “AND” gates to effectively merge the data lines 

to one interrupt signal, the button interrupt. 

In a computer repair class that I took, I found out that 

mechanical switches/keys bounce that causes voltage fluctuations. Debouncing 

circuits will be needed for my thermostat’s keypad. I looked at the 

breadboard that I borrowed from ULV, and I noticed that a 7414 microchip is 

next to the pulse buttons. Ironically, I did not realized what it really does 

until two months later. 7414 is just a schmitt-trigger version of 7404 (Texas 

Instruments 1.2). Schmitt-trigger is different from any microchip shown in my 

classes. It avoids the ambiguity that exist between logic 0 voltage and logic 

1 voltage by not changing its output until the input crosses the ambiguous 

voltage range and reach one of the two trigger voltages (Rizzoni 752). 

I forgot that the data lines are also outputs. When the DSP is 

outputting data, data signals from the DSP reach the inputs of the “AND” 

gates that emit the button interrupt signal, and the “AND” gates act as if 

the buttons were being pressed. I had to put a tri-state buffer in the button 
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circuits. I bought the microchips that comes closes to the AHCT (advanced 

high-speed CMOS, TTL compatible) family that I am using. The electronics 

suppliers that will sell the microchips that I prefer only sell it as a 

special order and require me to buy over a thousand. 

I bought 74126, 74125, 74240, and 74244. These four microchips 

are all tri-state buffers. I preferred to use 74240 or 74244, since one pin 

operates the control of all the tri-state buffers. I was not sure what 

microchip to use, since DSP documentation is not clear on whether “read” is 

incoming data and “write” is outgoing data or visa versa. I determined input 

or output only by machine instructions: port(address)=data and 

data=port(address). I discovered that 74126 is the one that works the best. 

It has control pins that enable the tri-state buffers when they receive a 

high signal. 

Documentation for the DSP shows that the read/write pin is high 

for read operation (Texas Instruments 10.10-10.17). This means that the DSP 

documents assign the term “read” to receiving data from external sources. The 

other three microchips have the negative type of control pins, which made 

them useless for my use. 
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CHAPTER 4 

HARDWARE FEATURES 

 

The DSP’s address lines connected the RTC’s and LED’s address 

lines and is decoded to control their read and write operations. A memory map 

can be constructed to indicate all the LED’s and RTC’s functions. I found 

making this table to be a very useful way of getting more aquatinted with the 

LED and RTC. It also serves as a quick reference for programming the 

thermostat. See Figures 4, 5, 6, and 7 in Appendix B. 

The LED and RTC are very self-contained components. They each 

have a built-in crystal to synchronize their circuits. They operate more like 

many sophisticated I/O devices than common microchips. Control pins do not 

designate most of their functions. Instead, commands are given by loading 

values into their various memory/register locations. To make an action or a 

configuration change, one needs to address the appropriate memory/register 

and give the settings or values as data. I am using the term 

“memory/register”, since there is a combination of memory and registers that 

are addressed as part of the memory space. 

The RTC’s memory map is relatively simple. All its functions and 

values are stored in a contiguous block of memory/register. The only thing 

that is complex about the map is some control bits are in the current month 

memory location instead of the command register. Unlike the hour format bits, 

these bits have nothing to do with their location. The LED’s memory map is 

far more complex. It nearly drove me insane! The map is not contiguous. It is 

a hodgepodge collection of memories and registers. Unlike the RTC, the LED’s 

address lines do not act as standard address lines. The LED has a pin named 

“FL” that has the timing behavior of an address line, but is actually 

function pin for flash RAM operation. The address range is riddled with 

doesn’t cares that prevent a straight forward memory map. The way I choose to 
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deal with this problem, is to simply wire the address lines of the LED and 

RTC straight to the RTC’s address lines, and the same for the data lines. 

Deal with the complexities in with software code. 
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CHAPTER 5 

SYNTAX AND SOFTWARE CODE 

 

The DSP’s machine language is very different from the IBM PC 

compatible machine language with which I am experienced. PCs run software in 

segments. Program, data, and the stack are loaded into separated segments and 

are indicated by their respective segment registers. Program means the actual 

sequence of instructions that tell the computer system what to do. Data is 

the collection of variables used by the program. Stack is the stack that 

temporary values are stored, especially when subroutines are executed. These 

three elements also exist in the DSP, but in a different form. Data and 

program are stored in separate address spaces. Data and program are stored in 

two separate memory systems that have separate addressing. There is address 

100 in program space and another address 100 in data space. Stack is placed 

in the program space and is indicated by a stack pointer. PCs also have 

addressing spaces. The Program, data, and stack go into memory space. PCs and 

the DSP have separate addressing space input/output peripherals (Texas 

Instruments 9.30-9.42). 

I found that I could perform consecutive readings from the LED 

without problems. The problem was how I defined the variables used to hold 

the read values. I used “.space” assembler directive. It is documented for 

use with setting aside memory for variables. Its uniqueness is that it can 

define the allocated space in bits and not give an initial data value for the 

variable. I accidentally used an odd value that made the apparent addresses 

of my variables deceptive. Due to a confusing selection of assembler 

variable/data directives, I thought that “.word” directive, which initializes 

a word of memory with a data value, would have a fixed data value that can’t 

be changed by the processor during execution. However the “.word” directive 

was actually the perfect directive for all my variables and data locations. 
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Input/output operations operate with a word of data (Texas Instruments 4.1-

4.86). 

Besides the hardware connections, using interrupts also involve 

software implementation. When a processor receives an interrupt signal, it 

must note that an interrupt has occurred and, if “more than” exists, which 

interrupt it is. This information is stored in the DSP’s interrupt flag 

register. There are two other registers that DSP software code uses to 

control the handling of interrupts. The interrupt mask register is used to 

control the monitoring and ignoring of individual interrupts. To quickly 

ignore all interrupts, the interrupt mode (INTM) bit of status register zero 

(ST0). Fortunately, DSP assembly language offers directly access to register 

bits, such as INTM. I set this bit to disable interrupts during the execution 

of important code that most not is interrupted. I do not nee to manipulate 

INTM when calling interrupt service routines, since the DSP automatically set 

INTM to disable interrupts when calling the routine and enables interrupts 

when leaving the routine (Texas Instruments 6.26-42). 

Again reading the interrupt section of one of my DSP manuals. 

This time, things started to click in my mind. I went back to the samples of 

software code that came with the kit and finally matched what the manuals say 

with the sample codes. I copied the sample interrupt vector table and changed 

the pointer for "INT0" (the button input interrupt). I then copied my "HELLO" 

routine to my time display program and inserted the label to which interrupt 

points. Nothing appeared to have changed. I tested the switch circuits with a 

digital multi-meter and I found one problem, which I fixed quickly. Nothing 

still changed. I guessed that the interrupt was masked. I cleared the 

interrupt mask register. The display then showed "HELLO" and the time 

simultaneously without pushing any buttons. I suspected oscillation was 

occurring somewhere in the button circuit. The logic probe confirmed it. I 

realized that the oscillation was coming from the data lines to which the 
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buttons are connected. I disconnected the data lines, and the interrupt 

routine then behaved as I planned. 

The DSP kit’s user manual boasts that it has an easy to use 

algebraic assembly language (Texas Instruments 1.7). Months earlier, I 

wondered what the difference was between mnemonic and algebraic assembly 

languages. When I saw a reference manual for each listed in a related 

document list in the kit’s user manual I thought that it was not important to 

understand the deference, since I only need to use the algebraic assembler 

software (Texas Instruments vi-vii). I was wrong. When I looked for the I/O 

instructions that I had use for programming. The DSP CPU architecture 

reference manual shows the I/O instructions, but I could not find them in the 

algebraic assembly reference manual (Texas Instruments Tms320c54x Dsp 

Reference Set: Algebraic Instruction Set ). I ran into confusion. I 

discovered that the architecture manual gives information in terms of 

mnemonic instructions (Texas Instruments 2.14,3.12,5.4-5.7). When I 

downloaded the mnemonic assembly reference manual and found the I/O 

instructions that I saw in the architecture reference manual (Texas 

Instruments Tms320c54x Dsp Reference Set: Mnemonic Instruction Set ). Then I 

thought that there were differences in the capabilities of the two assemblers 

and that I will need the mnemonic assembler to perform I/O operations. I 

finally found a statement in the kit user’s manual that illustrates and 

clarifies the differences between the two assemblers. They do have the same 

capabilities. The algebraic instructions are in the form equations for people 

are not familiar with assembly languages. Mnemonic instructions are like 

traditional assembly instructions (Texas Instruments 1.7). 

This explains the difficulty I had understanding the algebraic 

instructions. I was trying to compare algebraic instructions to the assembler 

instructions I learned in my college courses. I finally found the algebraic 

instructions I was looking for by searching for the description headlines 



 

 

29 

that both assembler reference manuals have in common. I do not know what 

Texas Instruments was thinking when they made two assemblers with drastically 

different syntax for the same CPU. Algebraic reads more naturally like “C 

language”, but it still has as many syntax restrictions and bulkiness of 

traditional assembly language. 

I successfully ran code to have the clock (RTC), send an 

interrupt once per second, and have the DSP respond by running an interrupt 

service routine (ISR) that reads the time and displays it on the LED. I also 

have successfully ran the ISR code that reads the button inputs and displayed 

them on the LED in response to flipping a button. I had both ISRs (time and 

input) run in the same execution. Then I could begin to write the actual 

thermostat code. 

Now its time to make seriously detailed design decisions. I look 

upon this project as an opportunity to express my design preference for rock-

solid reliability that too many of today’s cheaply made systems do not have. 

The thermostat should always retrieve information from its source, instead of 

indirect methods that would be simpler or more efficient but more unreliable. 

Each minute, the RTC will send an interrupt to the CPU; the CPU then copies 

the new time from the RTC a few times; the CPU then verifies the new time 

reading by comparing copies to each other. This is done instead of just 

incrementing the CPU’s copy of the time after each interrupt. When the user 

sets the time, the CPU write the user’s time to its RAM while they are 

inputting; the CPU copies the whole time to the RTC; the CPU then reads the 

RTC’s time to verify that the RTC is set to the user’s time. When the 

display’s contents need to be changed, the CPU updates display data in its 

RAM and copy the whole display data to the LED; the CPU then copies display 

data from the LED’s RAM to verify a successful transmission. This done 

instead of transferring and verifying only the display data characters that 

actually change. The chosen method is less efficient, especially if the 
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display is updating from user input, but the software routine for the display 

is simplified. If a transmission has failed, it will be repeated. One could 

be transmitted for satiability reasons, however for software reasons all of 

it must me retransmitted. 

I believe that the architecture of the thermostat’s software 

should be based on the architecture of the DOS operating system. A DOS boot 

disk contains free system files (IO.SYS, MSDOS.SYS, and COMMAND.COM). IO.SYS 

is the set of routines that adapt the operating system’s core to the system’s 

hardware and contains service routines for file operations, etceteras. 

MSDOS.SYS is the operating system’s core or kernel that is coordinates 

activities and manage resources of the system. COMMAND.COM is the command 

interpreter, which translates the user’s commands into instructions that the 

kernel can understand (Forney 240-41,318-19,47; Mazidi 650-55). The DSP chip 

has an interrupt vector table that handles hardware and software interrupts. 

That will allow me to have my kernel and other routines call over routines 

via software interrupts. Secondary operations such as setting the correct 

time could be handled as hybrid of application programs (the kernel will give 

control over to the operation) and service routines (operation will be 

requested by a known software interrupt and known parameters) (Mazidi 822-

61). 

Later, I came up with a different scheme for planning my 

thermostat's software. I was trying to come up with a scheme that follows MS-

DOS software architecture (what I understood of it). I now came up with a 

scheme based on 'modes'. As I look at my basic draft plan, I noticed that it 

resembles DOS more accurately than my earlier scheme and that my earlier 

scheme has a few mistakes in it. Sometimes re-inventing the wheel is better. 

I have three modes (menu, decision, and control equivalent to MS-

DOS's COMMAND.COM, MSDOS.SYS, and IO.SYS, respectively). Decision mode is the 

default mode in which decisions are made and actions are called. Menu mode is 
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the mode, which is triggered when a user presses a button and is responsible 

for users inputting the desired temperature-time settings. Control mode is 

the mode that is activated by decision mode when it decides that a task of 

motor controlling or temperature reading is needed. For simplicity, control 

and menu modes are uninterruptible. This is like in DOS when applications and 

the command prompt were not pre-empted by anything and ended only when their 

tasks were finished. Time updates occur and button input interrupts are 

acknowledge only when decision mode is running. The reasoning is time updates 

are only needed to trigger decision mode to call for actions and the buttons 

will be read every second or less when menu mode is running. At the end of 

the control and menu modes, time will be updated. See Figure 12 in Appendix 

C. 

I was inspired by how time and alarms are set in digital watches. 

They only use a few buttons to navigate all their functions, and the display 

flashes characters and digits to indicate what is being changed. Fortunately, 

the LED has built-in flashing (blinking of selected characters). I was going 

to use the LED’s flashing in the same manner as a digital watch. Characters 

are selected for flashing by changing the contents of the LED’s flash RAM. 

Making use of LED’s flashing capability to indicate a cursor 

position, there are two variables for the cursor. “curpos” represents the 

current cursor place, while “curflsh” represents the current LED positions 

that should be flashing. Having both provides abilities to turn off flashing 

without forgetting the cursor position and have LED positions flash that do 

not represent the cursor position. 

The PORT command requires an immediate address, thus changing I/O 

addresses cannot be automated by using a variable (Texas Instruments 1-

4,3.65-3.66). To over come this problem for the proposed thermostat software, 

the characters are placed in a location in DSP’s RAM instead of being sent 

directly to the LED. A subroutine is used to automatically to copy all eight 
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characters from the location in DSP’s RAM to the location in LED’s RAM that 

displays ASCII characters. 

As I feared, the DSP assembly language has proven itself to be 

very difficult. 

The code I made to test the hardware only used a few types of 

instructions and a few simple addressing modes. As soon as I started to try 

using more instructions and addressing mode, I ran into the language's 

restrictive syntax numerous times. Auxiliary registers can't be used in many 

arithmetic-logic operations, accumulator registers can't be used in stack 

operations, and etceteras(Texas Instruments 1.2,1.3,2.11,2.15). 

As soon as I tried to make procedures, the assembler crashes. I 

had to change to clean booting an old version of MS-DOS to assemble. 

After eliminating errors and tracing the problem down to a few 

instructions. I received unexpected garbage on the LED display. I tried to 

trace the problem by means of elimination with no success. The software to 

bring the thermostat closer to functionality (proposed software) is not 

completed. 

I have decided to submit my project with my primitive code that I 

made to fully test the hardware, including interrupts. It has the DSP 

interrupt table that contains my time and button-input interrupts, and the 

corresponding interrupt routines. The code illustrates the hardware 

functionality by reading the time from the RTC, changing the data format, 

writing to the time to the LED, reading button pressing, and display the 

button pattern on the LED. I also provide the proposed code of my thermostat 

in Appendix A to further illustrate how the thermostat should and can 

operate. 
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CHAPTER 6 

CONCLUSION AND FUTER EXPANSION 

 

There is one thing that I really could have done better. R/W’ 

(read/write) pin would probably have worked correctly in place of one of the 

address lines that went to the select pins of the decoder, thus simplifying 

my I/O addressing scheme. The address to read from a location in the LED or 

RTC would be the same as the address to write to the same location in the LED 

or RTC. The thermostat’s I/O address map would be half its current size. R/W’ 

pin has timing characteristics that are nearly identical to the addressing 

lines. Small differences in timing should not make a difference, since it is 

the IOSTRB (I/O strobe) pin that actually triggers the decoder into sending a 

signal. I try to use as few different types of pins as possible, because I 

was uncomfortable with timing. 

In the above mention implementation, the decoder would 

effectively combine the strobe and R/W’ lines to form a more conventional 

read and write signals. This is similar to Early IBM Personal Computers that 

had the Intel 8086 processor mix its read and write signals with its address 

space select (IO/MEM) line to form hybrid signals, read and writes for memory 

and for I/O. (Mazidi 222-23) 

This project has taught me some valuable lessons. As a customer 

of numerous computer hardware products, I complain when I buy a new hardware 

product that has less logic circuitry and thus requires more external 

processing power to run its larger software. One example is a new printer 

that I bought. Its driver (software) does much of the computations for the 

printer and consumes large amounts of RAM and CPU time. My older printer’s 

driver simply acted as an adapter for the printer and Window’s printer 

manager or a DOS program. As a designer, I can now appreciate the trend 

toward software design. I try to make the hardware design of my project to be 
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as simple as possible. As a direct result, the software became more 

complicated. Hardware is more difficult to design than software. Software has 

crisp digital logic. From the software side, a machine instruction is clearly 

defined. From the hardware side, a machine instruction is defined as a 

collection of electronic signals that have timing and other electronic 

characteristics. Those characteristics are analog and can fluctuate based on 

different conditions (quality of wiring, environment conditions, and 

etceteras). 

The thermostat obviously needs temperature sensors and window 

motor controls to complete its hardware. Using another of the DSP’s 

interfaces to connect the sensors and controls would be a good idea. This 

avoids altering the core thermostat hardware that has already been proven to 

function properly. Also, this provides increased reliability. Unlike the core 

hardware that can be placed in a case, the sensors and controls would be 

strung around the building. The DSP still has a buffered serial port and a 

time-division serial port available (Texas Instruments 1.4). Only the DSP 

will control the sensors and controls, thus the time-division serial port is 

inappropriate. 

One set of products that show potential are Dallas 

Semiconductor’s 1-wire, line–powered “MicroLAN” series of switches, digital 

temperature sensors, and other items such as real time clocks. There web site 

is http://www.dalsemi.com. The advantage of “MicroLAN” is that it only uses 

one wire to transfer information (Dallas Semiconductor Application Note 104: 

Minimalist Temperature Control Demo ). This reduces wiring. Conceivably, a 

set of only four wires would be needed to run around the building. One wire 

would be used as the ground for the “MicroLAN” devices. Another wire would be 

used as the data line for the “MicroLAN” devices. “MicroLAN” devices also use 

the data line as its power line. The other two wires would be used for the 

window motors. This scheme separates the ground of the motors from the ground 
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of the “MicroLAN”. When motors start and stop, the voltage that appears 

across them fluctuates. This is acceptable for the motors, but would corrupt 

logic values for the “MicroLAN”. Another advantage is one wire is both 

control and data which means there are no timing issues. Dallas Semiconductor 

makes other serial products with 2-wire and three-wire interfaces. Those 

products are not compatible with the DSP’s interface timing characteristics. 

The consequence of having a one-wire interface is that the 

protocol of the devices is relatively complex. To provide an easier design 

solution, Dallas Semiconductor makes adapters/controllers that can connect 

“MicroLAN” to the serial ports on computers, which are asynchronous. Using 

such adapters might be difficult, since the DSP serial port’s design is 

proprietary, synchronous, and is designed to connect to similar DSPs. Wiring 

the “MicroLAN” directly to the DSP serial port could also be difficult. 

Without an adapter, the DSP’s buffered serial port’s pin for output and pin 

for input (Texas Instruments 9.33) would have to be wired to MicroLAN’s 

single input/output wire. Tri-state buffers would need to control the 

directions of signals. Fortunately, since there are no hardware timing 

issues, software could emulate the “MicroLAN” signals by using the continuous 

mode of the DSP serial port (Texas Instruments 9.25). 

If the Center for Regenerative Studies ever decides to fund this 

thermostat, the “C language” compiler for TMS320C54x could be purchased. With 

the “C language”, most computer scientists could program the temperature 

management routines of the thermostat as needed without being familiar with 

the hardware. This is the theoretical part of the thermostat, and would 

require a term of trial and error. Other students could possibly make parts 

of the thermostat, in their projects. I could finish designing many of the 

hardware control routines and provide function headers for linking to “C 

language” code to minimize the need to know the thermostat’s hardware design 

for other students. A student who specializes in network protocols could 
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write the code to emulate the “MicroLAN” signals. A student who specializes 

in artificial intelligence could design the temperature management of the 

thermostat. Due to the need for such specialties, the student probably needs 

to be graduate students. 
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APPENDIX A 

PROJECT SOURCE CODES 

 

 

Proposed Software – Main Body 

 

; Diagnostic Thermostat Software 
; This File was copied from a Texas Instruments sample file, 
; and then altered by Michael Warner II. 
; 
; ~ in comments indicates continuation of comment from previous the line 
; 
; LED stores characters as ASCII ("23" = 01100010b 01100011b) 
; RTC stores time values as packed BCD (23d = 0010 0011 b) 
; 
; *************************************************************************** 
; File: FirstApp.ASM -> First Application program for the 'C54x DSKplus 
; 
; *************************************************************************** 
 
        .width   80 
        .length  55 
 .title "Test input" 
 
        .mmregs    ;associate register names 
     ;~with their address 
 .setsect ".text",   0x500,0 ;loads program section 
 .setsect "vectors", 0x180,0 ;loads interrupt vector table 
 .setsect ".data",   0x700,1 ;loads data section 
 
 .sect "vectors"   ;beginning of interrupt vector table 
 .copy "d:\personal\senior\vector~2.asm" ;copies from another file 
 
 
 .data    ;beggining of data section 
 
; variables used as constants for DSP ouput 
ledb .word ' ' 
ledt .word ':' 
logic0 .word 0000h 
logic1 .word 0001h 
leds .word 000Ah ;initial command values for LED 
rtcs .word 0097h ;initial command values for RTC 
wdt .word 0001h ;RTC watchdog # of seconds 
 
; variables 
read1 .word 0000h 
read2 .word 0000h 
read3 .word 0000h 
cursor .word 0040h 
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 .text 
 
 pmst = #01a0h   ; set up iptr 
 sp = #0ffah                     ; init stack pointer. 
 
 IMR = #0ffffh   ;un-mask all interrupt 
 
; initialization 
 port(0070h) = *(leds)  ;initialize LED commands 
 port(00CCh) = *(logic0)  ;set watchdog timer 
 port(00CDh) = *(wdt)  ;~to 1 second intervals 
 port(00CBh) = *(rtcs)  ;initialize RTC commands 
 port(0040h) = *(logic0)  ;turn off LED flashing 
 port(0041h) = *(logic0)  ;~ 
 port(0042h) = *(logic0)  ;~ 
 port(0043h) = *(logic0)  ;~ 
 port(0044h) = *(logic0)  ;~ 
 port(0045h) = *(logic0)  ;~ 
 port(0046h) = *(logic0)  ;~ 
 port(0047h) = *(logic0)  ;~ 
 
; infinite loop to keep DSP running 
place 
 goto place 
 
 
; button interrupt service - visually indicate which button is pressed 
KEYIN 
 *(read3) = port(0001h)  ;read data lines 
 B = *(read3) 
 B = B <<C -12   ;shift button data bits down 
 B &= #000Fh   ;clear extra bits 
 B += #0030h   ;add 30h to form ASCII character 
 *(read3) = B 
 port(007Fh) = *(read3)  ;output chracter to LED 
 return_enable   ;end button interupt service 
 
 
; RTC interrupt service - displaying the time 
TIMEIN 
 port(007Dh) = *(ledt)  ;output colons to LED 
 port(007Ah) = *(ledt)  ;~ 
 
; displaying the hours 
 *(read1) = port(0084h)  ;read hours from RTC 
 B = *(read1)   ;copy for ones digit 
 *(read1) &= #000Fh  ;clear extra bits 
 *(read1) += #0030h  ;add 30h to form ASCII character 
 B = B <<C -4   ;shift tens digit down four bits 
 *(read2) = B   ;copy for tens digit 
 *(read2) &= #000Fh  ;clear extra bits 
 *(read2) += #0030h  ;add 30h to form ASCII character 
 port(0079h) = *(read1)  ;output numbers to LED 
 port(0078h) = *(read2)  ;~ 
 
; displaying the minutes 
 *(read1) = port(0082h)  ;read minutes from RTC 
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 B = *(read1) 
 *(read1) &= #000Fh 
 *(read1) += #0030h 
 B = B <<C -4 
 *(read2) = B 
 *(read2) &= #000Fh 
 *(read2) += #0030h 
 port(007Ch) = *(read1) 
 port(007Bh) = *(read2) 
 
; displaying the seconds 
 *(read1) = port(0081h)  ;read seconds from RTC 
 B = *(read1) 
 *(read1) &= #000Fh 
 *(read1) += #0030h 
 B = B <<C -4 
 *(read2) = B 
 *(read2) &= #000Fh 
 *(read2) += #0030h 
 port(007Fh) = *(read1) 
 port(007Eh) = *(read2) 
 
 return_enable   ;end RTC interrupt service 
 
 .end 
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Test Code – Interrupt Vector Table “Vectors~1.asm” 

 

; Interrupt Vector Table for Thermostat Diagnostic Software 
; This File was copied from a Texas Instruments sample file, 
;  and then altered by Michael Warner II. 
; 
; ~ in comments indicates continuation of comment from previous the line 
; 
; Only int0 and int1 are used by thermostat. 
; 
; *************************************************************************** 
; File: VECTORS.ASM -> Vector Table for the 'C54x DSKplus           10.Jul.96 
; 
; *************************************************************************** 
; The vectors in this table can be configured for processing external and 
; internal software interrupts. The DSKplus debugger uses four interrupt 
; vectors. These are RESET, TRAP2, INT2, and HPIINT. 
;   *  DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER  * 
; 
; All other vector locations are free to use. When programming always be sure 
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and 
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the 
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally. 
; 
; 
; 

.width   80 

.length  55 
  .title "Vector Table" 

.mmregs   ;associate register names 
     ;~with their address 
 
reset  goto #80h   ;00; RESET  * DO NOT MODIFY IF USING DEBUGGER * 
 nop 
 nop 
nmi  return_enable   ;04; non-maskable external interrupt 

nop 
nop 
nop 

trap2  goto #88h   ;08; trap2  * DO NOT MODIFY IF USING DEBUGGER * 
 nop 
 nop 
 .space 52*16   ;0C-3F: vectors for software interrupts 18-30 
 
; Points to RTC routine. 
int0  goto KEYIN   ;40; external interrupt int0 

nop 
nop 
nop 

 
; Points to button routine. 
int1  goto TIMEIN   ;44; external interrupt int1 

nop 
nop 
nop 
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int2  return_enable   ;48; external interrupt int2 

nop 
nop 
nop 

tint  return_enable   ;4C; internal timer interrupt 
nop 
nop 
nop 

brint  return_enable   ;50; BSP receive interrupt 
nop 
nop 
nop 

bxint  return_enable   ;54; BSP transmit interrupt 
nop 
nop 
nop 

trint  return_enable   ;58; TDM receive interrupt 
 nop 
 nop 
 nop 
txint  return_enable   ;5C; TDM transmit interrupt 
  nop 
 nop 
int3  return_enable   ;60; external interrupt int3 

nop 
nop 
nop 

hpiint  dgoto #0e4h   ;64; HPIint  * DO NOT MODIFY IF USING 
DEBUGGER * 
 nop 
 nop 
 .space  24*16   ;68-7F; reserved area 
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Proposed Software – Main Body 

 

; Proposed Thermostat Software 
; This File was copied from a Texas Instruments sample file, 
;  and then altered by Michael Warner II. 
; 
; ~ in comments indicates continuation of comment from previous the line 
; 
; *************************************************************************** 
; File: FirstApp.ASM -> First Application program for the 'C54x DSKplus 
; 
; *************************************************************************** 
 
 .width  80 
 .length 55 
 .title "Test input" 
 
 .mmregs    ;associate register names 
     ;~with their address 
 .setsect ".text",   0x500,0 ;loads program section 
 .setsect "vectors", 0x180,0 ;loads interrupt vector table 
 .setsect ".data",   0x700,1 ;loads data section 
 
 .sect "vectors"   ;beginning of interrupt vector table 
 .copy "d:\personal\senior\Code\Vectors.asm" 
     ;copies from another file 
 
 .data 
;spoint .word 0 ;points to current temperature setting 
;sched .word 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
;10 temperature settings (day,hour,minute) 
 
curtemp .word 0070h 
curtime .word 0,0,0,0,0  ;(day, hour 10s/1s, minute 10s/1s) 
curdspl .word 0,0,0,0,0,0,0,0 ;eight LED characters 
curkey .word 0000h  ;current key read 
curflsh .word 0000h  ;current flash locations 
curpos .word 0000h  ;current cursor position 
    ;~(each bit = LED character position) 
 
; LED values 
ledb .word ' '  ;variables used as constants for output 
ledc .word ':'  ;~ 
ledinit .word 000Ah  ;initial command values for LED 
daydd .word 'S','u','M','o','T','u','W','e','T','h','F','r','S','a' 
 
; RTC values 
rtcinit .word 0097h  ;initial command values for RTC 
rtckey .word 0050h  ;RTC watchdog # of .01 seconds for key read 
rtctick .word 0060h  ;RTC watchdog # of seconds for time update 
rtcstr .word 0041h 
rtcintm .word 0000h  ;RTC watchdog interrupt context 
    ;~(1 = real-time, 2 = key rate) 
 
; variables used as constants for DSP output 
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logic0 .word 0000h 
logic1 .word 0001h 
 
; variables 
read1 .word 0000h 
read2 .word 0000h 
read3 .word 0000h 
 
 .text 
 
;Initialization BEGIN 
 
; Initialize DSP BEGIN 
 pmst = #01a0h   ;set up iptr 
 sp = #0ffah   ;init stack pointer. 
 imr = #0ffffh   ;enable all interrupts 
 intm = #0001h   ;globally disable interrupts for now 
; Initialize DSP END 
 
; Initialize LED BEGIN 
 port(0070h) = *(ledinit) ;set LED settings 
 
 port(0040h) = *(logic0)  ;clear flashing 
 port(0041h) = *(logic0)  ;~ 
 port(0042h) = *(logic0)  ;~ 
 port(0043h) = *(logic0)  ;~ 
 port(0044h) = *(logic0)  ;~ 
 port(0045h) = *(logic0)  ;~ 
 port(0046h) = *(logic0)  ;~ 
 port(0047h) = *(logic0)  ;~ 
 
 port(0078h) = *(ledb)  ;blank LED 
 port(0079h) = *(ledb)  ;~ 
 port(007Ah) = *(ledb)  ;~ 
 port(007Bh) = *(ledb)  ;~ 
 port(007Ch) = *(ledb)  ;~ 
 port(007Dh) = *(ledb)  ;~ 
 port(007Eh) = *(ledb)  ;~ 
 port(007Fh) = *(ledb)  ;~ 
; Initialize LED END 
 
; Initialize RTC BEGIN 
 port(00CCh) = *(logic0)  ;set watchdog interval 
 port(00CDh) = *(rtctick) ;~to 60.00 seconds 
 port(00C9h) = *(rtcstr)  ;start RTC's clock 
 *(rtcintm) = #0001h  ;set watchdog context to real time 
 *(read1) = port(0082h)  ;set RTC to 24 hour time 
 *(read1) &= #00BFh  ;~ 
 port(00C2h) = *(read1)  ;~ 
 port(00CBh) = *(rtcinit) ;enable watchdog on intA 
; Initialize RTC END 
 
 intm = 0   ;ready to receive interrupts 
 
;Initialization END 
;================================================== 
;Decision Mode BEGIN 
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; infinite loop to keep DSP running 
dm1 nop 
 goto dm1 
; Temperature prediction 
;Decision Mode END 
;-------------------------------------------------- 
;Menu Mode BEGIN 
; THIS PROCEDURE IS NOT FUNCTIONAL. 
; NON-UNDERSTANDABLE PARTS WERE BEING CHANGED FOR DEBUGGING. 
KEYIN 
; back-up registers contents 
 AR7 = B 
 push(AR7) 
 AR7 = A 
 push(AR7) 
 
; change from clock read mode to key read mode 
 port(00CCh) = *(rtckey)  ;set watchdog interval 
 port(00CDh) = *(logic0)  ;~to 00.50 seconds for key rate 
 *(rtcintm) = #0002h  ;set watchdog context to key rate 
 
 *(curkey) = #0000h 
 *(curpos) = #0007h 
ki1 
 B = *(curkey) 
 B -= #0001h 
 if (bneq) goto ki2 
 A = *(curpos) 
 A -= #0007h 
 if (aeq) goto ki2 
 *(curpos) += #0001h 
 *(curkey) = #0000h 
 call chnpos 
 call toled 
ki2 
 B = *(curkey) 
 B -= #0002h 
 if (bneq) goto ki3 
 A = *(curpos) 
 if (aeq) goto ki3 
 *(curpos) -= #0001h 
 *(curkey) = #0000h 
 call chnpos 
 call toled 
 
; 
ki3 B = *(curkey) 
 B -= #0004h 
 if (bneq) goto ki1 
 goto ki4 
 
 goto ki1 
ki4 
; change from key read mode to clock read mode 
 *(rtcintm) = #0001h  ;set watchdog context to real time 
 port(00CCh) = *(logic0)  ;set watchdog interval back 
 port(00CDh) = *(rtctick) ;~to 60.00 seconds for real time 
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; restore register contents 
 AR7 = pop() 
 A = AR7 
 AR7 = pop() 
 B = AR7 
 return_enable 
;Menu Mode END 
;------------------------------------------------- 
; Control Mode BEGIN 
; Thermometers and relays control main procedure goes here. 
; Control Mode END 
;Decision Procedures=============================== 
; Time Update BEGIN 
timeupd 
; back-up registers contents 
 AR7 = B 
 push(AR7) 
 
; update day of week 
 *(curtime) = port(0086h) ;read day from RTC 
 *(curtime) &= #000Fh  ;clear extra bits and store 
 
; update hour of day 
 *(curtime + 2) = port(0084h) ;read hour fromRTC 
 B = *(curtime + 2)  ;copy for ones digit 
 *(curtime + 2) &= #000Fh ;clear extra bits and store 
 B = B <<C -4   ;shift tens digit down four bits 
 *(curtime + 1) = B  ;copy for tens digit 
 *(curtime + 1) &= #000Fh ;clear extra bits and store 
 
; update minute of hour 
 *(curtime + 4) = port(0082h) 
 B = *(curtime + 4)  
 *(curtime + 4) &= #000Fh 
 B = B <<C -4 
 *(curtime + 3) = B 
 *(curtime + 3) &= #000Fh 
 
; restore register contents 
 AR7 = pop() 
 B = AR7 
 return 
; Time Update END 
;---------------------------------------------------- 
; Display Time BEGIN 
distime 
; back-up registers contents 
 AR7 = B 
 push(AR7) 
 
; find string for current day 
 B = #daydd  ;get address of string list of days 
 B -= #0002h  ;get address of today's characters 
 B += *(curtime)  ;~ 
 B += *(curtime)  ;~ 
 AR7 = B 
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; copy string to DSP's display space 
 B = *AR7+ 
 *(curdspl) = B 
 B = *AR7 
 *(curdspl + 1) = B 
 
; copy hours and minutes to DSP's display space 
 data(curdspl + 2) = *(ledb)  ;blank 
 data(curdspl + 3) = *(curtime + 1) ;hours tens 
 *(curdspl + 3) += #0030h  ;convert to ASCII 
 data(curdspl + 4) = *(curtime + 2) ;hours one 
 *(curdspl + 4) += #0030h 
 data(curdspl + 5) = *(ledc)  ;":" 
 data(curdspl + 6) = *(curtime + 3) ;minutes tens 
 *(curdspl + 6) += #0030h 
 data(curdspl + 7) = *(curtime + 4) ;minutes ones 
 *(curdspl + 7) += #0030h 
 
; restore register contents 
 AR7 = pop() 
 B = AR7 
 return 
; Display Time END 
;Menu Procedures=================================== 
; Key Read BEGIN 
; THIS SUBROUTINE IS NOT FUNCTIONAL. 
; NON-UNDERSTANDABLE PARTS WERE BEING CHANGED FOR DEBUGGING. 
keyrd 
 *(curkey) = port(0001h)   ;port address is a dummy 
 B = *(curkey)    ;keys are the highest 4 bits 
 B = B <<C -12    ;~of the 16 bit data line 
 B &= #000Fh    ;cleared unused bits 
 B ^= #0FFFFh    ;invert 
 *(curkey) = B 
 
 return 
; Key Read END 
 
; Change Position BEGIN 
chnpos 
; backup register contents 
 AR7 = B 
 push(AR7) 
 AR7 = A 
 push(AR7) 
 
 B = *(curpos) 
 A = #0080h 
 *(curflsh) = #0000h 
cp1 
 if (beq) goto cp2 
 B += #0001h 
 A = A <<C -1 
 goto cp1 
 *(curflsh) = A 
cp2 
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; restore register contents 
 AR7 = pop() 
 A = AR7 
 AR7 = pop() 
 B = AR7 
 return 
; Change Position END 
;Control Procedures================================== 
; Thermometers and relays control subroutines go here. 
;General Procedures================================== 
; RTC Watchdog Interrupt BEGIN 
TIMEIN 
; backup register contents 
 AR7 = B 
 push(AR7) 
 
 B = *(rtcintm)  ;read the RTC watchdog interrupt context 
 B = B <<C -1 
 if (bneq) goto ti1 ;if context was not real-time 
 call timeupd  ;update DSP's copy of time 
 call distime  ;copy time to DSP's display space 
 call toled  ;update LED contents 
 goto ti2 
ti1 call keyrd  ;read buttons 
 
; restore register contents 
ti2 AR7 = pop() 
 B = AR7 
 Return_enable 
; RTC Watchdog Interrupt END 
;----------------------------------------------------- 
; Transfer to LED BEGIN 
toled: 
; backup register contents 
 AR7 = B 
 push(AR7) 
 
; set LED flashing according to cursur position 
 B = *(curflsh)   ;read cursor position 
 
 B = B <<C -1 
 if (c) goto ttl1  ;if cursor is position 1 
 port(0040h) = *(logic0)  ;clear flashing at position 1 
 goto ttl2 
ttl1 port(0040h) = *(logic1)  ;set flashing at position 1 
ttl2 
 B = B <<C -1 
 if (c) goto ttl3  ;if cursor is position 2 
 port(0041h) = *(logic0) 
 goto ttl4 
ttl3 port(0041h) = *(logic1) 
ttl4 
 B = B <<C -1 
 if (c) goto ttl5  ;if cursor is position 3 
 port(0042h) = *(logic0) 
 goto ttl6 
ttl5 port(0042h) = *(logic1) 
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ttl6 
 B = B <<C -1 
 if (c) goto ttl7  ;if cursor is position 4 
 port(0043h) = *(logic0) 
 goto ttl8 
ttl7 port(0043h) = *(logic1) 
ttl8 
 B = B <<C -1 
 if (c) goto ttl9  ;if cursor is position 5 
 port(0044h) = *(logic0) 
 goto ttl10 
ttl9 port(0044h) = *(logic1) 
ttl10 
 B = B <<C -1 
 if (c) goto ttl11  ;if cursor is position 6 
 port(0045h) = *(logic0) 
 goto ttl12 
ttl11 port(0045h) = *(logic1) 
ttl12 
 B = B <<C -1 
 if (c) goto ttl13  ;if cursor is position 7 
 port(0046h) = *(logic0) 
 goto ttl14 
ttl13 port(0046h) = *(logic1) 
ttl14 
 B = B <<C -1 
 if (c) goto ttl15  ;if cursor is position 8 
 port(0047h) = *(logic0) 
 goto ttl16 
ttl15 port(0047h) = *(logic1) 
 
; copy from DSP's display space to LED 
ttl16 
 port(0078h) = *(curdspl) 
 port(0079h) = *(curdspl + 1) 
 port(007Ah) = *(curdspl + 2) 
 port(007Bh) = *(curdspl + 3) 
 port(007Ch) = *(curdspl + 4) 
 port(007Dh) = *(curdspl + 5) 
 port(007Eh) = *(curdspl + 6) 
 port(007Fh) = *(curdspl + 7) 
 
; restore register contents 
 AR7 = pop() 
 B = AR7 
 return 
; Transfer to LED END 
 
 .end 
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Proposed Code – Interrupt Vector Table “Vectors.asm” 

 

; Interrupt Vector Table for Proposed Thermostat Software 
; This File was copied from a Texas Instruments sample file, 
;  and then altered by Michael Warner II. 
; 
; ~ in comments indicates continuation of comment from previous the line 
; 
; Only int0 and int1 are used by thermostat. 
; 
; *************************************************************************** 
; File: VECTORS.ASM -> Vector Table for the 'C54x DSKplus           10.Jul.96 
; 
; *************************************************************************** 
; The vectors in this table can be configured for processing external and 
; internal software interrupts. The DSKplus debugger uses four interrupt 
; vectors. These are RESET, TRAP2, INT2, and HPIINT. 
;   *  DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER  * 
; 
; All other vector locations are free to use. When programming always be sure 
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and 
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the 
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally. 
; 
; 
; 
 .width   80 
 .length  55 
  .title "Vector Table" 
 .mmregs   ;associate register names 
     ;~with their address 
 
reset goto #80h   ;00; RESET  * DO NOT MODIFY IF USING DEBUGGER * 
 nop 
 nop 
nmi return_enable   ;04; non-maskable external interrupt 

nop 
nop 
nop 

trap2  goto #88h   ;08; trap2  * DO NOT MODIFY IF USING DEBUGGER * 
 nop 
 nop 
 .space 52*16   ;0C-3F: vectors for software interrupts 18-30 
 
; Points to button routine 
int0  goto KEYIN   ;40; external interrupt int0 

nop 
nop 

 
; Points to RTC routine 
int1  goto TIMEIN   ;44; external interrupt int1 

nop 
nop 

 
int2  return_enable   ;48; external interrupt int2 
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nop 
nop 
nop 

tint  return_enable   ;4C; internal timer interrupt 
nop 
nop 
nop 

brint  return_enable   ;50; BSP receive interrupt 
nop 
nop 
nop 

bxint  return_enable   ;54; BSP transmit interrupt 
nop 
nop 
nop 

trint return_enable   ;58; TDM receive interrupt 
 nop 
 nop 
 nop 
txint  return_enable   ;5C; TDM transmit interrupt 

nop 
 nop 
int3  return_enable   ;60; external interrupt int3 

nop 
nop 
nop 

hpiint dgoto #0e4h   ;64; HPIint  * DO NOT MODIFY IF USING DEBUGGER * 
  nop 
  nop 
  .space  24*16   ;68-7F; reserved area 
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APPENDIX B 

PROJECT DIAGRAMS 
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DECI MAL OPEREATI ON MODE COMPONENT ADDRESSI NG HEX DESCRI PTI ON

A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 X X 0 0 0 000 Char act er  1 Read f r om t he LED' s

1 0 0 0 0 X X 0 0 1 001 Char act er  2 Fl ash RAM

2 0 0 0 0 X X 0 1 0 002 Char act er  3 ( Bl i nki ng of  Char act er s Cont r ol )

3 0 0 0 0 X X 0 1 1 003 Char act er  4

4 0 0 0 0 X X 1 0 0 004 Char act er  5

5 0 0 0 0 X X 1 0 1 005 Char act er  6

6 0 0 0 0 X X 1 1 0 006 Char act er  7

7 0 0 0 0 X X 1 1 1 007 Char act er  8

32 0 0 0 1 0 0 X X X 020 Read f r om t he LED' s UDC Addr ess Regi st er  ( UDC RAM Poi nt er )

40 0 0 0 1 0 1 0 0 0 028 Row 1 Read f r om t he LED' s

41 0 0 0 1 0 1 0 0 1 029 Row 2 UDC RAM

42 0 0 0 1 0 1 0 1 0 02A Row 3 ( Cust om Char at er  Memor y)

43 0 0 0 1 0 1 0 1 1 02B Row 4

44 0 0 0 1 0 1 1 0 0 02C Row 5

45 0 0 0 1 0 1 1 0 1 02D Row 6

46 0 0 0 1 0 1 1 1 0 02E Row 7

48 0 0 0 1 1 0 X X X 030 Read f r om t he LED' s Cont r ol  Wor d Regi st er  ( Commands)

56 0 0 0 1 1 1 0 0 0 038 Char act er  1 Read f r om t he LED' s

57 0 0 0 1 1 1 0 0 1 039 Char act er  2 Char act er  RAM

58 0 0 0 1 1 1 0 1 0 03A Char act er  3 ( Di spl ay Memor y)

59 0 0 0 1 1 1 0 1 1 03B Char act er  4

60 0 0 0 1 1 1 1 0 0 03C Char act er  5

61 0 0 0 1 1 1 1 0 1 03D Char act er  6

62 0 0 0 1 1 1 1 1 0 03E Char act er  7

63 0 0 0 1 1 1 1 1 1 03F Char act er  8

64 0 0 1 0 X X 0 0 0 040 Char act er  1 Wr i t e t o t he LED' s

65 0 0 1 0 X X 0 0 1 041 Char act er  2 Fl ash RAM

66 0 0 1 0 X X 0 1 0 042 Char act er  3 ( Bl i nki ng of  Char act er s Cont r ol )

67 0 0 1 0 X X 0 1 1 043 Char act er  4

68 0 0 1 0 X X 1 0 0 044 Char act er  5

69 0 0 1 0 X X 1 0 1 045 Char act er  6

70 0 0 1 0 X X 1 1 0 046 Char act er  7

71 0 0 1 0 X X 1 1 1 047 Char act er  8

96 0 0 1 1 0 0 X X X 060 Wr i t e t o t he LED' s UDC Addr ess Regi st er  ( UDC RAM Poi nt er )

104 0 0 1 1 0 1 0 0 0 068 Row 1 Wr i t e t o t he LED' s

105 0 0 1 1 0 1 0 0 1 069 Row 2 UDC RAM

106 0 0 1 1 0 1 0 1 0 06A Row 3 ( Cust om Char at er  Memor y)

107 0 0 1 1 0 1 0 1 1 06B Row 4

108 0 0 1 1 0 1 1 0 0 06C Row 5

109 0 0 1 1 0 1 1 0 1 06D Row 6

110 0 0 1 1 0 1 1 1 0 06E Row 7

112 0 0 1 1 1 0 X X X 070 Wr i t e t o t he LED' s Cont r ol  Wor d Regi st er  ( Commands)

120 0 0 1 1 1 1 0 0 0 078 Char act er  1 Wr i t e t o t he LED' s

121 0 0 1 1 1 1 0 0 1 079 Char act er  2 Char act er  RAM

122 0 0 1 1 1 1 0 1 0 07A Char act er  3 ( Di spl ay Memor y)

123 0 0 1 1 1 1 0 1 1 07B Char act er  4

124 0 0 1 1 1 1 1 0 0 07C Char act er  5

125 0 0 1 1 1 1 1 0 1 07D Char act er  6

126 0 0 1 1 1 1 1 1 0 07E Char act er  7

127 0 0 1 1 1 1 1 1 1 07F Char act er  8

Figure 4: LED address 

Figures 4,5,6,7: I/O Address Map with Data Descriptions 
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DESCRI PTI ON

D7 D6 D5 D4 D3 D2 D1 D0

Char act er  1 Read f r om t he LED' s X X X X X X X Fl ash

Char act er  2 Fl ash RAM

Char act er  3 ( Bl i nki ng of  Char act er s Cont r ol )

Char act er  4

Char act er  5

Char act er  6

Char act er  7

Char act er  8

Read f r om t he LED' s UDC Addr ess Regi st er  ( UDC RAM Poi nt er ) X X X X UDC number  ( 0 t o 15)

Row 1 Read f r om t he LED' s X X X Dot  Dat a

Row 2 UDC RAM

Row 3 ( Cust om Char at er  Memor y)

Row 4

Row 5

Row 6

Row 7

Read f r om t he LED' s Cont r ol  Wor d Regi st er  ( Commands) Cl ear St ar t  Test Test  f l ag Bl i nki ng Fl ash Br i ght ness

Char act er  1 Read f r om t he LED' s UDC/ ASCI I UDC don' t  car e or  Char act er  # UDC # or  Char act er  #

Char act er  2 Char act er  RAM

Char act er  3 ( Di spl ay Memor y)

Char act er  4

Char act er  5

Char act er  6

Char act er  7

Char act er  8

Char act er  1 Wr i t e t o t he LED' s X X X X X X X Fl ash

Char act er  2 Fl ash RAM

Char act er  3 ( Bl i nki ng of  Char act er s Cont r ol )

Char act er  4

Char act er  5

Char act er  6

Char act er  7

Char act er  8

Wr i t e t o t he LED' s UDC Addr ess Regi st er  ( UDC RAM Poi nt er ) X X X X UDC number  ( 0 t o 15)

Row 1 Wr i t e t o t he LED' s X X X Dot  Dat a

Row 2 UDC RAM

Row 3 ( Cust om Char at er  Memor y)

Row 4

Row 5

Row 6

Row 7

Wr i t e t o t he LED' s Cont r ol  Wor d Regi st er  ( Commands) Cl ear St ar t  Test Test  f l ag Bl i nki ng Fl ash Br i ght ness

Char act er  1 Wr i t e t o t he LED' s UDC/ ASCI I UDC don' t  car e or  Char act er  # UDC # or  Char act er  #

Char act er  2 Char act er  RAM

Char act er  3 ( Di spl ay Memor y)

Char act er  4

Char act er  5

Char act er  6

Char act er  7

Char act er  8

Figure 5: LED data 
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128 0 1 0 0 0 0 0 0 0 080 0. 01 Seconds Read f r om t he RTC' s

129 0 1 0 0 0 0 0 0 1 081 Seconds Cl ock,  Cal ender ,

130 0 1 0 0 0 0 0 1 0 082 Mi nut es Ti me of  Day Al ar m

131 0 1 0 0 0 0 0 1 1 083 Mi nut e Al ar m

132 0 1 0 0 0 0 1 0 0 084 Hour s

133 0 1 0 0 0 0 1 0 1 085 Hour  Al ar m

134 0 1 0 0 0 0 1 1 0 086 Days

135 0 1 0 0 0 0 1 1 1 087 Day Al ar m

136 0 1 0 0 0 1 0 0 0 088 Dat es

137 0 1 0 0 0 1 0 0 1 089 Mont hs

138 0 1 0 0 0 1 0 1 0 08A Year s ( Two Di gi t s)

139 0 1 0 0 0 1 0 1 1 08B Read f r om t he RTC' s Command Regi st er

140 0 1 0 0 0 1 1 0 0 08C 0. 01 Seconds Read f r om t he RTC' s

141 0 1 0 0 0 1 1 0 1 08D Seconds Wat chdog Al ar m

142 0 1 0 0 0 1 1 1 X 08E Read f r om t he RTC' s

144 0 1 0 0 1 X X X X 090 Gener al  Use Memor y

192 0 1 1 0 0 0 0 0 0 0C0 0. 01 Seconds Wr i t e t o t he RTC' s

193 0 1 1 0 0 0 0 0 1 0C1 Seconds Cl ock,  Cal ender ,

194 0 1 1 0 0 0 0 1 0 0C2 Mi nut es Ti me of  Day Al ar m

195 0 1 1 0 0 0 0 1 1 0C3 Mi nut e Al ar m

196 0 1 1 0 0 0 1 0 0 0C4 Hour s

197 0 1 1 0 0 0 1 0 1 0C5 Hour  Al ar m

198 0 1 1 0 0 0 1 1 0 0C6 Days

199 0 1 1 0 0 0 1 1 1 0C7 Day Al ar m

200 0 1 1 0 0 1 0 0 0 0C8 Dat es

201 0 1 1 0 0 1 0 0 1 0C9 Mont hs

202 0 1 1 0 0 1 0 1 0 0CA Year s ( Two Di gi t s)

203 0 1 1 0 0 1 0 1 1 0CB Wr i t e t o t he RTC' s Command Regi st er

204 0 1 1 0 0 1 1 0 0 0CC 0. 01 Seconds Wr i t e t o t he RTC' s

205 0 1 1 0 0 1 1 0 1 0CD Seconds Wat chdog Al ar m

206 0 1 1 0 0 1 1 1 X 0CE Wr i t e t o t he RTC' s

208 0 1 1 0 1 X X X X 0D0 Gener al  Use Memor y

≥256 1 X X X X X X X X 100 No Act i on

Figure 6: RTC and miscellaneous address 
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0. 01 Seconds Read f r om t he RTC' s Tent hs of  seconds Hundr et hs of  seconds

Seconds Cl ock,  Cal ender , For ced 0 Tens of  seconds Ones of  seconds

Mi nut es Ti me of  Day Al ar m For ced 0 Tens of  mi nut es Ones of  mi nut es

Mi nut e Al ar m Mask bi t Tens of  mi nut es Ones of  mi nut es

Hour s For ced 0 12hr / 24hr PM/ 20 hr 10 hr Ones of  hour s

Hour  Al ar m Mask bi t 12hr / 24hr PM/ 20 hr 10 hr Ones of  hour s

Days For ced 0 Ones of  days

Day Al ar m Mask bi t For ced 0 Ones of  days

Dat es For ced 0 Tens of  dat e Ones of  dat e

Mont hs OSC Mask SQW Mask For ced 0 10 mont h Ones of  mont hs

Year s ( Two Di gi t s) Tens of  year s Ones of  year s

Read f r om t he RTC' s Command Regi st er Tr ansf er I nt  pi n SWBhi / Bl o Pul se/ l evel 'WDA Mask ToDA Mask WDA f l ag ToDA f l ag

0. 01 Seconds Read f r om t he RTC' s Tent hs of  seconds Hundr edt hs of  seconds

Seconds Wat chdog Al ar m Tens of  seconds Ones of  seconds

Read f r om t he RTC' s

Gener al  Use Memor y

0. 01 Seconds Wr i t e t o t he RTC' s Tent hs of  seconds Hundr et hs of  seconds

Seconds Cl ock,  Cal ender , For ced 0 Tens of  seconds Ones of  seconds

Mi nut es Ti me of  Day Al ar m For ced 0 Tens of  mi nut es Ones of  mi nut es

Mi nut e Al ar m Mask bi t Tens of  mi nut es Ones of  mi nut es

Hour s For ced 0 12hr / 24hr PM/ 20 hr 10 hr Ones of  hour s

Hour  Al ar m Mask bi t 12hr / 24hr PM/ 20 hr 10 hr Ones of  hour s

Days For ced 0 Ones of  days

Day Al ar m Mask bi t For ced 0 Ones of  days

Dat es For ced 0 Tens of  dat e Ones of  dat e

Mont hs OSC Mask SQW Mask For ced 0 10 mont h Ones of  mont hs

Year s ( Two Di gi t s) Tens of  year s Ones of  year s

Wr i t e t o t he RTC' s Command Regi st er Tr ansf er I nt  pi n SWBhi / Bl o Pul se/ l evel 'WDA Mask ToDA Mask WDA f l ag ToDA f l ag

0. 01 Seconds Wr i t e t o t he RTC' s Tent hs of  seconds Hundr edt hs of  seconds

Seconds Wat chdog Al ar m Tens of  seconds Ones of  seconds

Wr i t e t o t he RTC' s

Gener al  Use Memor y

No Act i on

Figure 7: RTC and miscellanious data 
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APPENDIX C 

MISCELLANEOUS DIAGRAMS 

Strobe

A2

A1

A0

E1

Q7

Q6

Q5

Q2

Q1

Q0

Q4

Q3

DecoderDSP

Figure 8: Routing a Strobe 

high impedance high impedanceData

Read/
write

enable

Chip

enable

Address

high

low

high

low

high

low

high

low

Figure 9: Read and Write Cycles of LED and RTC 
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high impedance high impedanceData

I/O

strobe

Read/

write

Address

high

low

high

low

high

low

high

low

Figure 10: Read and Write Cycles of DSP without Wait 

high impedance high impedanceData

I/O

strobe

Read/

write

Address

high

low

high

low

high

low

high

low

Figure 11: Read and Write Cycles of DSP with Wait 
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RTC interrupt

key rate context
Return

Button

interrupt
Return

Software

interrupt

Return
RTC interrupt

real-time context

Decision

Mode

Menu

Mode

Control

Mode
load

(booting)

time update

Return

read button

Thermometers

and Relays

control

routines

(hardware

doesn't exist)

?

?

Figure 12: Hierarchy of Proposed Software 
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APPENDIX D 

PROJECT PRESENTATION 

Smart ThermostatSmart Thermostat

By Michael Warner II

A learning experience in basic

hardware/software system design

BackgroundBackground

� Wanting to do a practical project.

� Center for Regenerative Studies at

California State Polytechnic University,

Pomona
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Project GoalsProject Goals

� STARTED AS:

– Create a thermostat with more control

intelligence than standard thermostats

– Aid the Center for Regenerative Studies

in their efforts .

� ENDED AS:

– Create the hardware of the thermostat

control unit and sample software that

illustrates the function of the hardware

components.

Comparative Analysis of DesignsComparative Analysis of Designs

� 7400 Microchips

– Strengths: inexpensive and well-known

functions

–Weaknesses: complex wiring and high

component count

� Programmable Microchips

– Strengths: programmable functions

–Weaknesses: wiring more complex than

DSP since more than one is needed
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Comparative Analysis…,Comparative Analysis…, cont cont..

� Digital Signal Processors

– Strengths: simple wiring and low

component count (only one DSP is

needed)

–Weaknesses: functions are not well-

known

Design Decisions/ConceptsDesign Decisions/Concepts

� Transferring data between

components

– Tristate Buffers

� When to have DSP take input

– Polling versus Interrupts
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Digital Signal ProcessorDigital Signal Processor

� Built-In Interrupt Controller

– Can handle more than one interrupt line

without extra wiring.

� Built-In Memory

– No need for external memory chips.

� Built-In I/O Components

– Parallel Bus: Is used for loading code from a

personal computer.

– Serial Bus: Can be used for a sensor and

control network.

Eight Character LED DisplayEight Character LED Display

� Built-in ASCII Decoder

– Give ASCII instead of a dot matrix pattern

� Eight Addressable Character Positions

– Reduce the need for a decoder

� Built-in Memory

– No need for flip-flops to store current display

� Blinking Function

– No need for software-driven blink sequence

for cursor.
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Real Time ClockReal Time Clock

� Interrupt Output

– Provides a way for notifying DSP of time

events

� Built-in Battery

– Keeps accurate time even without

power.

� 50 Bytes of Nonvolatile Memory

– Could backup temperature readings.

Timing IssuesTiming Issues

� Simple Logic Circuits

� Synchronous Sequential Circuits

� Processors and Peripherals
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Timing Issues,Timing Issues, cont cont.: .: DSPDSP

Timing Issues,Timing Issues, cont cont.: .: LED & RTCLED & RTC
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Hardware LayoutHardware Layout

LEDRTCDSP

Decoder

InterruptInterruptAddressData Control AddressData ControlAddressData Control

Address

In

Control

Address

Out

Buttons

Diagnostic Software LayoutDiagnostic Software Layout

� Interrupt Vector Table

� Variables

� Initialize LED and RTC

� Infinite Loop

� Button Interrupt Service Routine

� RTC Interrupt Service Routine
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Conclusion: KnowledgeConclusion: Knowledge

� What classes at ULV helped me

– CMPS 110, CMPN 220, CMPN 280: Boolean

logic, logic gates, tristate buffers, decoders,

basic digital circuit principles, hands-on wiring

– CMPS 365: pointers, stacks, queues, records

– CMPN 330: assembly language, assembly

segments

– CMPN 480: more assembly language,

programmable microchips

– CMPS 367: C++ notation (+=, *=, &=)

Conclusion: Knowledge, Conclusion: Knowledge, contcont..

� What I learn outside of classes

– A common interface of processors and

peripherals: timing relationships,

different types of lines

– Interrupts: (pin, register, vector table,

service routines)

– How to read different types of technical

diagrams

–Wire-wrapping
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