

i

UNIVERSITY OF LA VERNE

SMART THERMOSTAT

A LEARNING EXPERIENCE IN BASIC HARDWARE/SOFTWARE SYSTEM DESIGN

A SENIOR PROJECT SUBMITTED TO

THE FACULTY OF THE DEPARTMENT OF MATHMATICS AND PHYSICS

IN CANDIDACY FOT THE DEGREE OF

BACHELOR OF COMPUTER SCIENCE AND COMPUTER ENGINEERING

ENGINEERING CONCENTRATION

BY

MICHAEL WARNER II

LA VERNE, CALIFORNIA

MAY 2000

ii

iii

CONTENTS

ABSTRACT.. iv

CHAPTERS

1. INTRODUCTION... 1

2. INITIAL PROJECT DESIGN................................. 7

3. PROJECT IMPLEMENTATION................................ 15

4. HARDWARE FEATURES..................................... 24

5. SYNTAX AND SOFTWARE CODE.............................. 26

6. CONCLUSION AND FUTER EXPANSION........................ 33

APPENDIXES

A. PROJECT SOURCE CODES.................................. 37

C. MISCELLANEOUS DIAGRAMS................................ 58

D. PROJECT PRESENTATION.................................. 61

WORKS CITED... 69

iv

ABSTRACT

This paper is the practical application of theory learned and a

great amount of additional learning. The goal was a device that is capable of

monitoring temperature in different areas at a given time. Then compare that

data to historic stored data to determine if and which windows should be open

or closed to improve the temperature in the house built at Center for

Regenerative Studies at California State Polytechnic University, Pomona,

California. Much of the learning was finding what chips and compatible

devices are available that will perform the function desired. They can not be

to expensive, since I had to buy everything, and allow me to program them to

complete the task desired. The goal changed to be a learning experience in

building a basic computer system. Do to inexperience, there was no

feasibility study completed before beginning design and implementation. The

assumption was made that almost anything is possible with digital electronic

technology and software. The biggest problem was locating the hardware that

was available and that would interface with other components to perform the

functions desired. The resulting implementations of the project was designed

as a direct result of learning theories/concepts and was implemented more

from the theories/concepts than from solving a problem. Do to these factors,

this paper is written mostly in a chronological order. The chronological

order will help the reader understand the results.

1

CHAPTER 1

INTRODUCTION

The prospect of deciding what to do for a senior project was

horrendous. I knew I wanted my project to involve digital hardware, since I

have a hardware emphasis of the computer science and computer engineering

program at the University of La Verne. I thought of many possibilities such

as having a computer control a model train system or collect and route the

audio signals of a stereo sound system via USB. After many such thoughts, I

decided that I did not want to spend time making something that only a

techno-weenie like me would want, fabulous yet barely useful. I wanted to

make something that someone actually wants and could use. Working to solve a

problem that someone needs solving would also motivate me better.

I made my decision for pragmatism at a good time. My opportunity

came during the winter interim. This was just before it was time sign-up for

my senior project. I was in an introductory biology class in which there were

a few field trips. I was looking for opportunities on each field trip. During

a field trip at the Center for Regenerative Studies at California State

Polytechnic University, Pomona, I heard that some things there were automated

and some more things were going to be automated. Automation is a killer

application for computer systems. What made this a real opportunity was that

the Center for Regenerative Studies was a place of experimentation, which

means experimenting with a prototype would be tolerated. I asked the tour

guide to talk with a person who is involved with the automation. They gave me

the center’s number to call. The secretary was able to reach the person whom

I needed to talk with.

The center serves as a part of many science departments. Despite

the many academic majors involved, the center is focused on finding and

developing ways to have humans live in ways that are less harmful on the

2

environment. Students gain hands-on experience working on many ecological

projects such as fish farming, plankton growing, and finding ways to conserve

energy (placing solar panels on poles that rotate to track the sun). Students

bring the expertise of their field of study to help on projects. Civil

engineering students help construct things other than the buildings which the

students inhabit. Biology students, work on organically growing plants and

fish farming. Students live and work at the center, usually for two years, as

part of an academic program. Beside the projects, students also do

maintenance duties such as taking turns to cook for the group of residing

students, and cleaning the buildings (Korthof).

The Center for Regenerative Studies wants as little pollution as

possible, so no air conditioners or heaters are used. To compensate for the

lack of active temperature regulation, their buildings are designed with

superior insulation. The building, with which I became interested, was built

partially into a hillside. The earth from the hill mostly covers one side of

the building. The walls of the building are made of thick concrete.

The building’s windows are the only way to heat and cool the

building. There are rows of small glass windows in the roof to let in

sunlight, which keeps the buildings from being too cold like an underground

basement. In the winter, the windows stay closed and let sunlight in to

create a greenhouse effect and warm up the building in the daytime. In the

summer, the windows in the roof are opened to allow the hot air to rise

through the roof, which is replaced, by air that has been cooled by the

coolness of the concrete walls and the hillside. Normal convection causes the

warmer air to rise. The building has one large main room and many small

rooms. The main room has the ceiling windows and many of the lower windows.

The small rooms also have windows that can open and close.

The person at the Center for Regenerative Studies whom I finally

spoke with was William Korthof. He was a civil engineering student who was

3

also an electronic hobbyist, one of many students who live at the center. A

project on which he was working was automating the opening and closing of

windows on a building to regulate the interior temperature. He had already

begun installing motors on the windows. He appeared to me as a person of

action, which gave me more confidence in collaborating with him. This was

offset by the fact the center refused to give much support, financial or

otherwise. The center did not make any requests in regards with that project.

It was an open-ended project with the only constraints being minimal cost to

the center and not interfering with other projects. The objective was to keep

the building’s temperature more comfortable without consuming a substantial

amount of electricity.

Mr. Korthof even installed a control feature, having each motor

wired to a limiter, which sets the range of a window’s movement. When a

window reaches a given position, the limiter cuts the power to the motor. The

limiter prevents the windows from opening too wide. The windows were each

originally installed with a crank that opened the windows with a set of

levers. If a window opens too wide, the levers are placed in a position that

makes closing the window difficult.

He also bought a small power converter to power the motors from

the standard utility power. The center had made technologies such as

electrical devices a low priority. The center is largely focused on more

manual methods that tend to pollute less and require less development of

things like power plants, long-distance power lines, etceteras. The power

converter that Mr. Korthof could afford was only powerful enough to power one

or two motors at a time. To operate many motors from one power converter, he

devised a plan to set a chain of relays, wired in series, that would run the

motors one at a time. When a limiter turns off one motor, a relay would turn

on the next motor.

4

The limiters make controlling the motorized windows more

feasible. Whatever or whoever opens or closes the windows does not have to

worry about leaving the motors run after the windows have reached the open or

closed position and running the risk of wearing down the motors. The limiters

combined with the relays would allow a two-position mechanism (a switch,

relay, and etceteras) to control a group of windows. The mechanism could be

set to the given open or close position and left there until the windows need

to be placed in another position.

What Mr. Korthof had not yet planned, was how to automate the

opening and closing of windows. He only placed a few switches to manually

switch the windows open and closed. He noted that people would tend to forget

to open and close the windows until the building becomes too hot or cold.

This would be unacceptable for most people who are accustom to convenient

temperature regulation, and thus would not achieve the center’s goal develop

a living area that can become popular with most people while using very

little resources. Opening the ceiling windows to vent the accumulated heat

out during a hot summer day might not be sufficient to cool the building. The

proactive step of allowing the cold early-morning air drift inside the

building might be needed to achieve sufficient amount of coolness for the

day. One complication of taking this step would be determining how cold the

building should be allowed to become to compensate for the heat of the day.

This determination is as much human preference for comfort as it is

technical. A regular thermostat could not perform this type control. Regular

thermostats are design to regulate temperature by using heaters and air

conditioners. A common configuration for older thermostats is to have a blue

slider and a red slider moved to various positions to indicate the desired

temperature range. When the temperature becomes too cold, the heater

operates. When the temperature becomes too hot, the air conditioner operates.

5

Using windows to regulate temperature does not work the same way

as using heaters and air conditioners. Heaters and air conditioners add and

remove heat from a mass of air, respectively. Opening windows only allows air

to convect heat into or out of the building, heat convection to a cooler

place. Thus, a special thermostat is needed for the building. The thermostat

needs to be capable of monitor the outside and inside temperatures. The

thermostat needs to take proactive measures to compensate for very hot and

very cold days. Neither Mr. Korthof nor I knew of any thermostats that could

perform such sophisticated functions. We concluded that a smart thermostat is

needed and one should be invented and built.

Mr. Korthof had the knowledge of how to wire motors and switches,

but he did not know about programming and hardware design. I asked him if I

could design a smart thermostat for the building. With my computer

software/hardware education, I had a decent chance to successfully create a

thermostat with programmable behavior. Since the window control project was a

low priority, he was able to have me create the smart thermostat without any

approval from the center’s administration or the university’s faculty.

The next thing that Mr. Korthof and I did was determined what

features we would like the smart thermostat to have. To have the thermostat

perform proactive measures with reasonable accuracy, the thermostat should

store inside and outside temperature readings for a few days and predict the

temperatures for the next 24 hours. The thermostat’s controls or menus should

be as simple as possible to be more compatible the center’s culture. Some

performance might be sacrificed to eliminate some fancy controls or menu

options, which would probably not get used by people at the center. The

options we definitely wanted were setting the desired high and low

temperature preferences for the day and night, respectively. More controls

maybe thought about as the thermostat was being designed, built, and

programmed. The building’s main room was the top priority for temperature

6

control. If possible, the small rooms would also be regulated as separate

zones that have their own temperature preference settings. These features

were tentative and subject to the successes and failures of the

hardware/software design process.

This project became a learning experience in making a complete

digital computer system. Though the thermostat is incomplete and is far

simpler than many existing computer systems. It has all the components of a

digital computer system, input (buttons), output (LED display), input-output

processor (DSP), central processing unit (DSP), and random-access memory

(DSP).

7

CHAPTER 2

INITIAL PROJECT DESIGN

I started with the advice, often given by people who are buying a

personal computer, that one should consider what they wanted a system to do

(software) before they choose the appropriate components (hardware). Thus, I

focused on the algorithms for determining when to close and open windows

first. I first made crude assumptions: open windows on summer nights to

collect cool air for summer day, open windows on winter days to release

excess heat caused by greenhouse effect. These assumptions develop a general

idea of what should happen. The question of figuring and predicting the

optimum times to open and close windows arose. I thought that such algorithms

needed to be sophisticate and involved artificial intelligence. Books that

cover the topic of artificial intelligence were difficult to read and

comprehend. I could only understand some general ideas. Due to my

inexperience, I had to abandon artificial intelligence and focus on the

hardware of my project. The process of thinking about algorithms did

influence my hardware design.

To perform the algorithms, the circuitry had to be designed that

was capable of performing complex algorithms. The types of such circuitry

that I learned in school were microprocessors, synchronous sequential

circuits, and algorithmic state machines. Finite state machines and

algorithmic state machines are difficult to use for complex algorithms. A,

synchronous sequential circuit must be redesigned every time an algorithm

needs to be changed, since its design is based on state tables (Mano 220-50).

Every step in an algorithm needs to be translated into state and input

conditions, a very arduous task. Algorithmic state machines are less

difficult. Their designs are based on flow charts, which are more natural for

implementing algorithms. They can be designed with an EPROM microchip at the

8

core of the design. With a good design, a change in an algorithm would only

require a change in the bits being stored in the EPROM. Still, each step in

the algorithm needs to be translated into bits stored on the EPROM (Mano 307-

36).

I was familiar with the 7400 logic series and programmable

microchips, which were used in my digital logic classes. I was also becoming

familiar with digital signal processors (DSPs); I found Texas Instruments’

web and was able to order free information that came on CD-ROMs. The

criterion for selecting the type of microchip was based on how complex the

logic should be and what the hardware could handle. The thermostat needed to

perform elaborate algorithms so it could manage the building’s temperature.

7400 logic series microchips are a tempting choice. They are very

cheap and are very well known. I had no problems looking for their

specifications. Yet, I realized that it would take numerous 7400 microchips

to store instructions and execute instructions. I built a simple arithmetic

logic unit as a laboratory exercise of CMPN 280 class. It took twelve 7400

series microchips to build. A gigantic mess of wires and microchips would

form and envelop the project with errors. I wanted to have as few parts as

possible to minimize hardware assembly problems.

Programmable microchips are a better choice than 7400 series

microchips (Mano 153-54). One programmable microchip could emulate several

7400 microchips. Despite that, the ones that ULV had still did not have

enough integration. From my experience in using it in advanced architecture

class, CMPN 480 I knew that it has limited capabilities. The microchip that I

used in class did not have enough input/output lines and control the logic to

operate as a traffic light controller. It would take at least a few of the

microchips to build a processor, not including memory for program and data. I

did not look for other programmable microchips that might have greater

capabilities, since I found a better solution, a digital signal processor.

9

Processors are more complex than 7400 logic and programmable

chips. They have a steeper learning curve as I have discovered. Their

overwhelming advantage is the algorithms that they are running can be changed

easily. In processors, algorithms are run as a sequence of machine language

instructions, which exists simply as a series of ones and zeroes that causes

the processor to perform operations. Fortunately, programmers can write

algorithms in assembly language instead of machine language. Assembly

provides programmer’s with symbolic names and numbers in place of binary bits

(Mazidi 50-77). Better still, many processors have a version of “C language”,

a high level language, available for them. I felt “C language” would be the

best for writing the algorithms for the thermostat. It is easier to write

programs with “C language” than with machine language, yet it is highly

optimized. “C language” still must be compiled into machine language to have

programs run; thus the “C language” compiler must be designed for the

processor that is being used (Deitel 6.13).

Before I signed-up for my senior project, I searched Texas

Instruments’ web site and ordered their reference CD’s, since they have a

good reputation as a leader in technology. I wanted to see what types of

hardware existed before I try to propose a project. I did not want to make a

project proposal and then be unable to find the hardware for the brain. The

microchips that seemed to be most promising were Texas Instrument’s digital

signal processors. These are complete processors that come with many

features, such as built-in RAM. Using a real processor would eliminate the

design task of creating a processor out of 7400 series and programmable

microchips.

While I was thinking about artificial intelligence, I started to

look at Texas Instruments’ application notes that involved artificial

intelligence and fuzzy logic. The one note that really caught my attention

was “What is Fuzzy Logic? An Overview of the Latest Control Methodology” by

10

Tomothy A. Adcock. Fuzzy logic produces a range of output values, instead of

just of two values of crisp logic: off and on (Adcock 2). Most thermostats

operate with crisp logic. This creates the hit and misses situations of

heaters over heating by a few degrees and air-conditioners over cooling by a

few degrees. After extensive analyses, I realized that my project was

significantly different from this application and I could not figure out how

to apply it to my project. The application note discussed the fuzzy logic of

a thermostat that operates a variable-speed fan to control temperature. My

thermostat was to predict the daily temperature changes and control long-term

temperatures instead of the immediate temperature. The note explained that

the calculations needed for fuzzy logic could be easily handled by their DSP

microprocessors, which have multiplier accumulators. I searched a month to

find a source to purchase their DSP microprocessors, before I found a DSP

starter kit. The kit comes with the processor already mounted to a board that

contains the circuits needed to operate the processor and simple software

needed to assemble and load code. This made my project much more manageable.

One of the first aspects of the thermostat would be the user

interface. Inspired by a digital thermostat that is in my home, I felt having

a display of alphanumeric characters was important. Users need to know what

temperatures the thermostat is reading, what are the current settings of the

thermostat, and view what they are setting as they press buttons. LED lamps

that were used in my digital logic classes are good for reading output from

relatively simple circuits. They are not good for easy reading of more

complex information, such as time of day, current temperature, and etceteras.

The user also needs a way to input preferences in the thermostat. The logic

switches that were used in the digital logic classes were used to input

binary values and to control digital circuits by sending +5 volts and ground

signals that are accepted as logic values by the digital circuits. Keyboards

send binary values to a computer system. One of the thermostats that are in

11

my home has a keypad. Keypads are like keyboards in that they have a matrix,

which sees a pressed key as a set of numbers. As I have mentioned earlier,

the thermostat needs to have as simple an interface as possible, thus the

number of buttons should be kept to a minimum. With a small number of

buttons, a matrix is not necessary. This Thermostat could use an algorithm

that is simpler than the algorithms that most computer systems use, since

there is no matrix to scan.

When I received the kit, I was overwhelmed by the technical

information that it came with. The one thing I quickly realized was the

software simply converts assembly language code into machine language and

loads it into the DSP microprocessor. Assembly language makes creating the

complex algorithms needed to determine when to open and close the windows

vary difficult. I found out that Texas Instruments does make a “C language”

compiler for that microprocessor that costs $1600. Such a high level language

is needed to make writing complex algorithms feasible. Do to financial

constraints, I could not obtain the “C” compiler and start writing fancy

algorithms thus forcing me to focus on hardware.

The DSP does not come with input and output devices. The DSP only

has ports and buses with which to interface (Texas Instruments Tms320c54x Dsp

Reference Set: Cpu and Peripherals). The DSP also lacks a real-time clock

with which to know current day and time of day. Computer platforms, such as

microcomputers, include a processor(s), system buses, video output, keyboard,

real-time clock, and etceteras. The “C language” was designed for such

complete systems. It was necessary to add the display, buttons, and real-time

clock to the DSP system to make it more like common computer systems. If I

had a “C language” compiler for the DSP, I would still have to write the

drivers (low level code) for the Stdout (standard output) and Stdin (standard

input), and Time (real time and processor clock count) libraries to for my

LED, buttons, and RTC (real-time clock), respectively. (Kernighan 161,242,55-

12

56; Texas Instruments 7.4-7.11). Thus, using “C language” would not be as

advantageous as it would be for a standard computer system.

When I stopped focusing on fancy programming, I realized that

putting the thermostat hardware together and trying to get its parts to

function correctly, would be a project onto itself. The only means of

electronically measuring temperature that I found were thermistors.

Thermistors are resisters that change resistance in relation to temperature.

The voltage being measured depends on the circuit in which a thermistor is

placed. Using a thermistor would involve using the A/D converter of the DSP

starter kit, using the serial port of the DSP microprocessor, and calibrating

the readings into actual temperature measurements (Rizzoni 715). I did not

have the experience to perform those tasks without great effort. I was

looking for thermometers with digital parallel outputs.

As I thought more about how the thermometers might be wired to

the thermostat at the Center, I realized that having thermometers send

temperature bits in parallel would cause problems. Parallel signal lines

cannot run the long distances required placing thermometers. Parallel lines

would develop different propagation delays that would cause bits to not

arrive at the same time (Rizzoni 767; Mazidi 747-58). I only thought of

scenarios where only the last few bits would be fluctuating (i.e. 00001100

and 00001011 might read as 00001111, a 2 bit inaccuracy). Then I realized

that there are much worst scenarios where several bits can be fluctuating

(i.e. 00100000 and 00011111 might read as 00111111, a 5 bit inaccuracy).

While I was looking for thermometers, I also was looking for a

display. The preferred features for a display would be built-in or add-on

control circuits (buffers, decoders, and etceteras), to avoid a heinous patch

wire jungle that I often built in digital logic labs. Decoders are needed to

select character positions. ASCII decoders are needed to convert ASCII code

to LED patterns. And, Buffers/memory are needed to store the display

13

characters while the DSP is performing operations other than outputting to

the display. It is common for LCDs to come with integrated with onboard logic

circuits to handle ASCII code and placing characters on various positions on

the display, but their documents confused me. Much later, I realized that I

misread the document that lead me to not use LCDs. Sometime later, I decided

to use LEDs. My classes made me familiar with LEDs. Only a resister is needed

to connect an LED to the output of a TTL microchip. LEDs rarely come with any

control. I found an assembly system that mounts digit LEDs together to form a

display line and mounts BCD decoders to the LEDs. That solution was expensive

and only reduces wiring a little. I could not use LED bulbs for the senior

project. They would not give me enough feedback information and would create

an undesirable design. I was depending on the display device to see what is

happening to the hardware, since the DSP kit’s monitoring program did not

seem to work. I finally found a alphanumeric LED module that has the built in

logic circuitry to decode ASCII code and store characters in built-in RAM to

eliminate the need for extra circuitry for displaying (Hewlett Packard HDSP-

2502) (Hewlett Packard).

The one of the features that distinguishes nice digital

thermostats from simple thermostats, is a clock that is used to turn

heaters/air-conditioners on and off at scheduled times. The DSP has a timer.

This timer works in terms of processor clock cycles, not time of day. I

realized I needed a real-time clock. The preferred features for a RTC would

be having an output to indicate when it is a certain time, and to set alarms

for any time down to the minute. I found a RTC with all the desired features

plus a built-in battery to keep time/alarm settings during power outage, 50

bytes of general-purpose RAM that can protect important information from

power outages (Dallas Semiconductor DS1286) (Dallas Semiconductor Ds1286

Watchdog Timekeeper).

14

After I found a neat display and clock, I turned my focus toward

the heart of the thermostat. I realized that the design of how the buttons,

display, and clock will interact with the DSP microprocessor would be a

challenge. I forwent designing the connections to motors and thermometers.

15

CHAPTER 3

PROJECT IMPLEMENTATION

I drew a simple block diagram of the thermostat to brainstorm

what kind of functional parts are needed. In all the excitement, I overlooked

the obvious need to think of the basic design of the whole thermostat.

Fortunately, the components that I have collected were robust and designed

for reasonably easy implementation.

Computer systems have three types of lines: address, data, and

control (Mazidi 882; Mano 385-91). Sometimes, a line will fall into more than

one category. Intel 8088 has eight lines that function as data and address

lines 217-222. Many peripherals, such as Hantronix LCDs and Motorola MC146818

RTC have similar lines (Hantronix "Commands for Character Modules" ;

Hantronix "Processor Interfacing" ; Motorola Semiconductor 10,17-19). Address

lines select a location in memory or a peripheral. For most part, address

lines connect directly to the address lines of memory and other chips. High

address lines often are connected via a decoder to chip enable pins of memory

and other chips (Mano 297). Data lines transfer actual data between chips.

Data lines are connected directly from the processor to peripherals. Control

lines handle interrupt requests, indicate read or write operations, indicate

the address space being used, and indicate when valid data or address is on

the lines. Many control lines connect directly from the processor to

peripherals, but due to semantics, control lines often have to be combined

via logic circuits to form new control lines that match a group of

peripherals (Mazidi 222-23,26-29). I understood the logical implications of

this, but not the timing aspects.

With the key components collected, the actual designing process

could begin. One of first things was figuring what and where the connections

are on the DSP kit. I roughly knew what the kit’s features were, but not the

16

details. I ran into a problem figuring what each hole is on the DSP kit

circuit board. These holes are where the other microchips would be connected

to the DSP. I looked up the board’s diagram in the manuals that came with the

kit. Finally, I understood what a set of circuit board diagrams were showing

(Texas Instruments A.1-A.8). The diagrams were schematic diagrams that are

like pin diagrams done in digital logic classes, with a few important

differences that confused me. The orientation of components in relation to

each other is shown and is important, since the DSP kit board was one solid

piece that could not be re-arranged at-will. Also the DSP has multiple rows

of holes instead of lines of pins.

One of first problems was figuring how to have the DSP processor

respond to the pressing of buttons quickly. If DSP does not respond within a

fraction a second, a user would let go of the button, and the signal that the

button made would disappear without being captured for processing. The DSP

also needed to respond to the RTC’s alarm signal to keep time current or to

perform a scheduled function promptly. I knew of two methods for monitoring

peripherals. In one method, called polling, the DSP could periodically check

the status of the peripherals. The RTC has a bit that indicates if an

interrupt has occurred. The problem with this method is the intervals for

checking must be short enough to assure reading each button being press. In

the other method, called interrupting, for each peripheral that needs to send

the DSP notices, one of the DSP’s interrupt lines is wired to the

peripheral’s line that will send the notice signal (Hennessy 567-70). The RTC

has two interrupts lines for its alarms. The buttons would need logic gates

to form an interrupt line. I realized that the buttons need to be connected

to an interrupt pin on the processor and an interrupt service program will

determine which key is being pressed and give that information to the program

that was running. A feature, such as interrupting is another reason to choose

a full-blown processor system.

17

The DSP has three address spaces: program, data and I/O. Program

and data spaces cover on-chip RAM and ROM. If external memory is connected to

the DSP, they can also cover the external memory (Texas Instruments 10.1-

10.20). In contrast, I/O space can only cover devices that are external to

the DSP. That is one reason that I chose to use I/O space for the LED and

RTC. There is no possibility of confusion between program/data and external

peripherals. The DSP’s built-in peripherals are accessed via registers that

are mapped in the beginning of data space, so they are also not covered by

I/O space (Texas Instruments 8.2-8.9).

The DSP uses separate control lines for I/O access and external

memory access. Each of the three addressing spaces has a space select pin

that changes to ground voltage when its associated space is in use. There are

two strobe pins, one for program/data memory access and one for I/O access.

Thus, using the I/O strobe line to enable the LED and RTC operations prevents

any command other than PORT from affecting them, even if the DSP is set to

access external memory for program code and data. I looked at the CPU’s I/O

timing diagrams to figure out what signal I will use to enable the LED and

RTC for data transfer. After a long series of looks, I spotted the strobe

signal as being ideal for that usage. I have seen the word strobe used in pin

diagrams for parallel ports and expansion slots, but I only then realized

what it does (Mazidi 313-503).

Another reason for choosing I/O space for the LED and RTC, is the

lack of choices for timing. Program and data spaces operate as memory access.

External memory can exist in multiple banks. The DSP has bank-switching

capabilities that can efficiently handle multiple banks. This feature changes

the timing characteristics of memory access, creating potential problems. I/O

space only has the option of using wait-states that lengthen the times from

when the strobe, space select, and read/write lines change values to when the

18

data values is transmitted. This should have no negative effects for the LED

and RTC.

The DSP’s wait states feature only allows more time for address

and control signals to set up before data is transmitted. The data

transmission is not lengthened. The address and control lines are not given

more time after the data transmission. This would help with the fist half of

the LED’s and RTC’s read/write cycle and with the tri-state buffers if they

delay button inputs too long. Yet, the second half of the LED’s and RTC’s

read/write cycle would not be helped. See Figure 11 in appendix C.

In a processor system, timing becomes an issue due having many

types of lines. Each of these lines has a timing relationship to each other.

Address lines activate first to select an I/O component or a region in

memory. Control lines activate at various times during a cycle to control the

type of action (read, write, enable a component, indicate data or address

line status, and etceteras). Data lines activate last when everything else is

ready and only then does valid data transfers occur. A special control line,

called strobe, indicates the exact moment when the signals on the data lines

are reliable and are captured by the device that is reading. After that, most

or generally all lines de-activate in reverse order from which they

activated. Many standard components follow this timing principle, which

allowed the LED and RTC to be connected to the DSP with only simple logic

circuits mitigating some lines (Mano 60-61).

The principle mentioned is applicable to systems using separate

address and data lines. The timing principle for systems that have address

and data multiplexed together onto the same lines is different. That

principle need not be explored, since the LED, RTC, and DSP have separate

data and address lines.

Compared to processor issues, what I learned in college was

simpler. In the digital logic lab classes, the most complex sequential

19

circuit assembled had several shift registers that were connected together

via a few buses. In class the issue of timing was discussed simply in terms

of the time taken for a signal to travel, not dependent on relationship. The

control lines were manually operated via logic switches. Data and control

switches are set and then the clock pulse switch is manually pushed. The

registers constantly output data except during a transition, and during an

operation the registers would simply receive input from a bus.

The LED and the RTC comply with a popular standard for memory

interface. There are no dedicated strobe lines. The read and write lines also

act as strobe lines. This standard applies to read/write lines that are one

line or two separate lines (Intel 2; Mano 294-95; Mano 60-61). The DSP does

not completely comply with this standard make wiring more difficult.

To connect the LED’s and RTC’s control lines to the DSP, their

timing and other characteristics must first be analyzed. Unlike the DSP, the

LED and RTC have no strobe lines. Unlike the DSP, they have separate read and

write enable lines. These facts prevent straight connections of control lines

from the DSP to the LED and RTC. Fortunately, the LED’s and RTC’s lines are

very similar, thus allowing a single design solution to operate both. The

read and write enable lines of the LED and RTC have the same timing

characteristics as the DSP’s I/O strobe line (Texas Instruments 10.16;

Hewlett Packard 6-7; Dallas Semiconductor 9). See Figures 9 and 10 in

Appendix C.

I wondered if the LED and RTC needed tri-state buffers to protect

the data pins. If I do need tri-state buffers, would I be able to select them

and still have enough time to transmit the data?

All the hardware issues confused me. Luckily, I finally found an

experienced digital/analog hardware engineer, Mr. Richard Burrows, to look at

the technical documents of the CPU, DSP, and RTC. The engineer pointed out

several important things to me. Since the LED and RTC have data pins that act

20

as input and output, they must have built-in tri-state function. The strobe

signal of the CPU is prolonged when the CPU is instructed to lengthen its I/O

timing. With those facts known, he concluded that I could wire the LED’s and

RTC’s data pins directly to the CPU’s data pins. The CPU’s strobe pin can be

wired to a decoder with strobe input (Texas Instruments 2). Given that a

decoder can route a strobe signal, the DSP’s address lines can select the

read and write enable lines of the LED and RTC (Burrows). See Figure 8 in

Appendix C. Just as with standard computer systems, the DSP cannot operate

the LED and RTC concurrently nor perform read operations and write operations

concurrently. Thus, this is a suitable design solution. The only disadvantage

is that the address to read from a location in the LED or RTC is different

from the address to write to the same location in the LED or RTC.

Given that a decoder can route a strobe signal, the DSP’s address

lines can select the read and write enable lines of the LED and RTC. Just as

with standard computer systems, the DSP cannot operate the LED and RTC

concurrently nor perform read operations and write operations concurrently.

Thus, this is a suitable design solution. The only disadvantage is that the

address to read from a location in the LED or RTC is different from the

address to write to the same location in the LED or RTC.

As I examined the timing information for the CPU, LED, and RTC; I

realized that the CPU operates significantly faster than the LED and RTC.

There is a potential problem for the LED and RTC to be unable to successfully

transmit and receive data from the CPU.

Synchronous circuits have a signal, clock, which controls the

holding of bits in flip-flops. A flip-flop is a collection of logic gates

that can hold a logic signal (Mano 210-18). By changing the frequency of the

clock signal, the rate at which bits are captured and held can be control. It

is this concept, which gave me the idea of attempting to change the clock

21

speed of the DSP to solve my timing problem of my different components’ clock

speeds.

To solve the problem of the DSP running faster than the LED and

RTC, I seek to manipulate the clock signals that regulate each of them. The

LED and RTC can output their clock signals or be overridden by external clock

signals. The RTC has the lowest clock frequency of all the components, and

thus the other components could run from it. Unfortunately, the DSP came

soldered to a crystal oscillator. To override its clock, I would need to

break the oscillator circuit on the DSP’s board, which could result in

damaging the DSP’s board, since the board’s micro-size parts makes such an

alteration extremely difficult. I would only have implemented this solution

after other options failed.

Another way to make data transfer between the CPU and peripherals

reliable, is to have a handshaking process. The LED and RTC that I have

chosen do not have any pins that will give feedback, so I can’t perform

handshaking (Hewlett Packard ; Dallas Semiconductor Ds1286 Watchdog

Timekeeper). As my computer architecture book indicates, asynchronous serial

transfer would be the simplest, since it has the strobe signal merged with

the data and there is only on data line instead of several. I found LEDs and

RTCs that have serial data interfaces in my catalog. I can’t do that too,

since the CPU’s serial port operates synchronously, thus it does not produce

start and stop bits. I could connect a UART to the CPU, but that would

probably be as complicated as connecting the LED and RTC directly with the

CPU.

Many Intel processors (486 and 586) can operate at multiples of

an external clock speed (Mazidi 638-39). The DSP has a similar feature. The

DSP has three clock mode pins that determine what multiple of its internal or

an external oscillator. These pins are accessible from the solder holes in

the board. When I started to wire the thermostat, I tried to change the

22

voltages that appear at the DSP’s clock mode pins. The unfortunately, one of

the pins would not change to voltage that I apply to the corresponding

soldering hole.

The next piece of hardware I needed to add would was the buttons

that would be used for user input. As with wiring the LED and RTC to the DSP,

there are design considerations for interfacing buttons into the thermostat.

I connected the buttons to DSP data lines that are not being used by the LED

or RTC. I figured this would eliminate the need for adding tri-state buffers

to control the buttons’ connection to the data bus.

Unlike a common logic gate, tri-state buffers have a high-

impedance state that effectively acts as a broken circuit. When many

components share a common line, they use tri-state buffers to have only one

component connect to the line at a time (Mano 420).

I used a group of “AND” gates to effectively merge the data lines

to one interrupt signal, the button interrupt.

In a computer repair class that I took, I found out that

mechanical switches/keys bounce that causes voltage fluctuations. Debouncing

circuits will be needed for my thermostat’s keypad. I looked at the

breadboard that I borrowed from ULV, and I noticed that a 7414 microchip is

next to the pulse buttons. Ironically, I did not realized what it really does

until two months later. 7414 is just a schmitt-trigger version of 7404 (Texas

Instruments 1.2). Schmitt-trigger is different from any microchip shown in my

classes. It avoids the ambiguity that exist between logic 0 voltage and logic

1 voltage by not changing its output until the input crosses the ambiguous

voltage range and reach one of the two trigger voltages (Rizzoni 752).

I forgot that the data lines are also outputs. When the DSP is

outputting data, data signals from the DSP reach the inputs of the “AND”

gates that emit the button interrupt signal, and the “AND” gates act as if

the buttons were being pressed. I had to put a tri-state buffer in the button

23

circuits. I bought the microchips that comes closes to the AHCT (advanced

high-speed CMOS, TTL compatible) family that I am using. The electronics

suppliers that will sell the microchips that I prefer only sell it as a

special order and require me to buy over a thousand.

I bought 74126, 74125, 74240, and 74244. These four microchips

are all tri-state buffers. I preferred to use 74240 or 74244, since one pin

operates the control of all the tri-state buffers. I was not sure what

microchip to use, since DSP documentation is not clear on whether “read” is

incoming data and “write” is outgoing data or visa versa. I determined input

or output only by machine instructions: port(address)=data and

data=port(address). I discovered that 74126 is the one that works the best.

It has control pins that enable the tri-state buffers when they receive a

high signal.

Documentation for the DSP shows that the read/write pin is high

for read operation (Texas Instruments 10.10-10.17). This means that the DSP

documents assign the term “read” to receiving data from external sources. The

other three microchips have the negative type of control pins, which made

them useless for my use.

24

CHAPTER 4

HARDWARE FEATURES

The DSP’s address lines connected the RTC’s and LED’s address

lines and is decoded to control their read and write operations. A memory map

can be constructed to indicate all the LED’s and RTC’s functions. I found

making this table to be a very useful way of getting more aquatinted with the

LED and RTC. It also serves as a quick reference for programming the

thermostat. See Figures 4, 5, 6, and 7 in Appendix B.

The LED and RTC are very self-contained components. They each

have a built-in crystal to synchronize their circuits. They operate more like

many sophisticated I/O devices than common microchips. Control pins do not

designate most of their functions. Instead, commands are given by loading

values into their various memory/register locations. To make an action or a

configuration change, one needs to address the appropriate memory/register

and give the settings or values as data. I am using the term

“memory/register”, since there is a combination of memory and registers that

are addressed as part of the memory space.

The RTC’s memory map is relatively simple. All its functions and

values are stored in a contiguous block of memory/register. The only thing

that is complex about the map is some control bits are in the current month

memory location instead of the command register. Unlike the hour format bits,

these bits have nothing to do with their location. The LED’s memory map is

far more complex. It nearly drove me insane! The map is not contiguous. It is

a hodgepodge collection of memories and registers. Unlike the RTC, the LED’s

address lines do not act as standard address lines. The LED has a pin named

“FL” that has the timing behavior of an address line, but is actually

function pin for flash RAM operation. The address range is riddled with

doesn’t cares that prevent a straight forward memory map. The way I choose to

25

deal with this problem, is to simply wire the address lines of the LED and

RTC straight to the RTC’s address lines, and the same for the data lines.

Deal with the complexities in with software code.

26

CHAPTER 5

SYNTAX AND SOFTWARE CODE

The DSP’s machine language is very different from the IBM PC

compatible machine language with which I am experienced. PCs run software in

segments. Program, data, and the stack are loaded into separated segments and

are indicated by their respective segment registers. Program means the actual

sequence of instructions that tell the computer system what to do. Data is

the collection of variables used by the program. Stack is the stack that

temporary values are stored, especially when subroutines are executed. These

three elements also exist in the DSP, but in a different form. Data and

program are stored in separate address spaces. Data and program are stored in

two separate memory systems that have separate addressing. There is address

100 in program space and another address 100 in data space. Stack is placed

in the program space and is indicated by a stack pointer. PCs also have

addressing spaces. The Program, data, and stack go into memory space. PCs and

the DSP have separate addressing space input/output peripherals (Texas

Instruments 9.30-9.42).

I found that I could perform consecutive readings from the LED

without problems. The problem was how I defined the variables used to hold

the read values. I used “.space” assembler directive. It is documented for

use with setting aside memory for variables. Its uniqueness is that it can

define the allocated space in bits and not give an initial data value for the

variable. I accidentally used an odd value that made the apparent addresses

of my variables deceptive. Due to a confusing selection of assembler

variable/data directives, I thought that “.word” directive, which initializes

a word of memory with a data value, would have a fixed data value that can’t

be changed by the processor during execution. However the “.word” directive

was actually the perfect directive for all my variables and data locations.

27

Input/output operations operate with a word of data (Texas Instruments 4.1-

4.86).

Besides the hardware connections, using interrupts also involve

software implementation. When a processor receives an interrupt signal, it

must note that an interrupt has occurred and, if “more than” exists, which

interrupt it is. This information is stored in the DSP’s interrupt flag

register. There are two other registers that DSP software code uses to

control the handling of interrupts. The interrupt mask register is used to

control the monitoring and ignoring of individual interrupts. To quickly

ignore all interrupts, the interrupt mode (INTM) bit of status register zero

(ST0). Fortunately, DSP assembly language offers directly access to register

bits, such as INTM. I set this bit to disable interrupts during the execution

of important code that most not is interrupted. I do not nee to manipulate

INTM when calling interrupt service routines, since the DSP automatically set

INTM to disable interrupts when calling the routine and enables interrupts

when leaving the routine (Texas Instruments 6.26-42).

Again reading the interrupt section of one of my DSP manuals.

This time, things started to click in my mind. I went back to the samples of

software code that came with the kit and finally matched what the manuals say

with the sample codes. I copied the sample interrupt vector table and changed

the pointer for "INT0" (the button input interrupt). I then copied my "HELLO"

routine to my time display program and inserted the label to which interrupt

points. Nothing appeared to have changed. I tested the switch circuits with a

digital multi-meter and I found one problem, which I fixed quickly. Nothing

still changed. I guessed that the interrupt was masked. I cleared the

interrupt mask register. The display then showed "HELLO" and the time

simultaneously without pushing any buttons. I suspected oscillation was

occurring somewhere in the button circuit. The logic probe confirmed it. I

realized that the oscillation was coming from the data lines to which the

28

buttons are connected. I disconnected the data lines, and the interrupt

routine then behaved as I planned.

The DSP kit’s user manual boasts that it has an easy to use

algebraic assembly language (Texas Instruments 1.7). Months earlier, I

wondered what the difference was between mnemonic and algebraic assembly

languages. When I saw a reference manual for each listed in a related

document list in the kit’s user manual I thought that it was not important to

understand the deference, since I only need to use the algebraic assembler

software (Texas Instruments vi-vii). I was wrong. When I looked for the I/O

instructions that I had use for programming. The DSP CPU architecture

reference manual shows the I/O instructions, but I could not find them in the

algebraic assembly reference manual (Texas Instruments Tms320c54x Dsp

Reference Set: Algebraic Instruction Set). I ran into confusion. I

discovered that the architecture manual gives information in terms of

mnemonic instructions (Texas Instruments 2.14,3.12,5.4-5.7). When I

downloaded the mnemonic assembly reference manual and found the I/O

instructions that I saw in the architecture reference manual (Texas

Instruments Tms320c54x Dsp Reference Set: Mnemonic Instruction Set). Then I

thought that there were differences in the capabilities of the two assemblers

and that I will need the mnemonic assembler to perform I/O operations. I

finally found a statement in the kit user’s manual that illustrates and

clarifies the differences between the two assemblers. They do have the same

capabilities. The algebraic instructions are in the form equations for people

are not familiar with assembly languages. Mnemonic instructions are like

traditional assembly instructions (Texas Instruments 1.7).

This explains the difficulty I had understanding the algebraic

instructions. I was trying to compare algebraic instructions to the assembler

instructions I learned in my college courses. I finally found the algebraic

instructions I was looking for by searching for the description headlines

29

that both assembler reference manuals have in common. I do not know what

Texas Instruments was thinking when they made two assemblers with drastically

different syntax for the same CPU. Algebraic reads more naturally like “C

language”, but it still has as many syntax restrictions and bulkiness of

traditional assembly language.

I successfully ran code to have the clock (RTC), send an

interrupt once per second, and have the DSP respond by running an interrupt

service routine (ISR) that reads the time and displays it on the LED. I also

have successfully ran the ISR code that reads the button inputs and displayed

them on the LED in response to flipping a button. I had both ISRs (time and

input) run in the same execution. Then I could begin to write the actual

thermostat code.

Now its time to make seriously detailed design decisions. I look

upon this project as an opportunity to express my design preference for rock-

solid reliability that too many of today’s cheaply made systems do not have.

The thermostat should always retrieve information from its source, instead of

indirect methods that would be simpler or more efficient but more unreliable.

Each minute, the RTC will send an interrupt to the CPU; the CPU then copies

the new time from the RTC a few times; the CPU then verifies the new time

reading by comparing copies to each other. This is done instead of just

incrementing the CPU’s copy of the time after each interrupt. When the user

sets the time, the CPU write the user’s time to its RAM while they are

inputting; the CPU copies the whole time to the RTC; the CPU then reads the

RTC’s time to verify that the RTC is set to the user’s time. When the

display’s contents need to be changed, the CPU updates display data in its

RAM and copy the whole display data to the LED; the CPU then copies display

data from the LED’s RAM to verify a successful transmission. This done

instead of transferring and verifying only the display data characters that

actually change. The chosen method is less efficient, especially if the

30

display is updating from user input, but the software routine for the display

is simplified. If a transmission has failed, it will be repeated. One could

be transmitted for satiability reasons, however for software reasons all of

it must me retransmitted.

I believe that the architecture of the thermostat’s software

should be based on the architecture of the DOS operating system. A DOS boot

disk contains free system files (IO.SYS, MSDOS.SYS, and COMMAND.COM). IO.SYS

is the set of routines that adapt the operating system’s core to the system’s

hardware and contains service routines for file operations, etceteras.

MSDOS.SYS is the operating system’s core or kernel that is coordinates

activities and manage resources of the system. COMMAND.COM is the command

interpreter, which translates the user’s commands into instructions that the

kernel can understand (Forney 240-41,318-19,47; Mazidi 650-55). The DSP chip

has an interrupt vector table that handles hardware and software interrupts.

That will allow me to have my kernel and other routines call over routines

via software interrupts. Secondary operations such as setting the correct

time could be handled as hybrid of application programs (the kernel will give

control over to the operation) and service routines (operation will be

requested by a known software interrupt and known parameters) (Mazidi 822-

61).

Later, I came up with a different scheme for planning my

thermostat's software. I was trying to come up with a scheme that follows MS-

DOS software architecture (what I understood of it). I now came up with a

scheme based on 'modes'. As I look at my basic draft plan, I noticed that it

resembles DOS more accurately than my earlier scheme and that my earlier

scheme has a few mistakes in it. Sometimes re-inventing the wheel is better.

I have three modes (menu, decision, and control equivalent to MS-

DOS's COMMAND.COM, MSDOS.SYS, and IO.SYS, respectively). Decision mode is the

default mode in which decisions are made and actions are called. Menu mode is

31

the mode, which is triggered when a user presses a button and is responsible

for users inputting the desired temperature-time settings. Control mode is

the mode that is activated by decision mode when it decides that a task of

motor controlling or temperature reading is needed. For simplicity, control

and menu modes are uninterruptible. This is like in DOS when applications and

the command prompt were not pre-empted by anything and ended only when their

tasks were finished. Time updates occur and button input interrupts are

acknowledge only when decision mode is running. The reasoning is time updates

are only needed to trigger decision mode to call for actions and the buttons

will be read every second or less when menu mode is running. At the end of

the control and menu modes, time will be updated. See Figure 12 in Appendix

C.

I was inspired by how time and alarms are set in digital watches.

They only use a few buttons to navigate all their functions, and the display

flashes characters and digits to indicate what is being changed. Fortunately,

the LED has built-in flashing (blinking of selected characters). I was going

to use the LED’s flashing in the same manner as a digital watch. Characters

are selected for flashing by changing the contents of the LED’s flash RAM.

Making use of LED’s flashing capability to indicate a cursor

position, there are two variables for the cursor. “curpos” represents the

current cursor place, while “curflsh” represents the current LED positions

that should be flashing. Having both provides abilities to turn off flashing

without forgetting the cursor position and have LED positions flash that do

not represent the cursor position.

The PORT command requires an immediate address, thus changing I/O

addresses cannot be automated by using a variable (Texas Instruments 1-

4,3.65-3.66). To over come this problem for the proposed thermostat software,

the characters are placed in a location in DSP’s RAM instead of being sent

directly to the LED. A subroutine is used to automatically to copy all eight

32

characters from the location in DSP’s RAM to the location in LED’s RAM that

displays ASCII characters.

As I feared, the DSP assembly language has proven itself to be

very difficult.

The code I made to test the hardware only used a few types of

instructions and a few simple addressing modes. As soon as I started to try

using more instructions and addressing mode, I ran into the language's

restrictive syntax numerous times. Auxiliary registers can't be used in many

arithmetic-logic operations, accumulator registers can't be used in stack

operations, and etceteras(Texas Instruments 1.2,1.3,2.11,2.15).

As soon as I tried to make procedures, the assembler crashes. I

had to change to clean booting an old version of MS-DOS to assemble.

After eliminating errors and tracing the problem down to a few

instructions. I received unexpected garbage on the LED display. I tried to

trace the problem by means of elimination with no success. The software to

bring the thermostat closer to functionality (proposed software) is not

completed.

I have decided to submit my project with my primitive code that I

made to fully test the hardware, including interrupts. It has the DSP

interrupt table that contains my time and button-input interrupts, and the

corresponding interrupt routines. The code illustrates the hardware

functionality by reading the time from the RTC, changing the data format,

writing to the time to the LED, reading button pressing, and display the

button pattern on the LED. I also provide the proposed code of my thermostat

in Appendix A to further illustrate how the thermostat should and can

operate.

33

CHAPTER 6

CONCLUSION AND FUTER EXPANSION

There is one thing that I really could have done better. R/W’

(read/write) pin would probably have worked correctly in place of one of the

address lines that went to the select pins of the decoder, thus simplifying

my I/O addressing scheme. The address to read from a location in the LED or

RTC would be the same as the address to write to the same location in the LED

or RTC. The thermostat’s I/O address map would be half its current size. R/W’

pin has timing characteristics that are nearly identical to the addressing

lines. Small differences in timing should not make a difference, since it is

the IOSTRB (I/O strobe) pin that actually triggers the decoder into sending a

signal. I try to use as few different types of pins as possible, because I

was uncomfortable with timing.

In the above mention implementation, the decoder would

effectively combine the strobe and R/W’ lines to form a more conventional

read and write signals. This is similar to Early IBM Personal Computers that

had the Intel 8086 processor mix its read and write signals with its address

space select (IO/MEM) line to form hybrid signals, read and writes for memory

and for I/O. (Mazidi 222-23)

This project has taught me some valuable lessons. As a customer

of numerous computer hardware products, I complain when I buy a new hardware

product that has less logic circuitry and thus requires more external

processing power to run its larger software. One example is a new printer

that I bought. Its driver (software) does much of the computations for the

printer and consumes large amounts of RAM and CPU time. My older printer’s

driver simply acted as an adapter for the printer and Window’s printer

manager or a DOS program. As a designer, I can now appreciate the trend

toward software design. I try to make the hardware design of my project to be

34

as simple as possible. As a direct result, the software became more

complicated. Hardware is more difficult to design than software. Software has

crisp digital logic. From the software side, a machine instruction is clearly

defined. From the hardware side, a machine instruction is defined as a

collection of electronic signals that have timing and other electronic

characteristics. Those characteristics are analog and can fluctuate based on

different conditions (quality of wiring, environment conditions, and

etceteras).

The thermostat obviously needs temperature sensors and window

motor controls to complete its hardware. Using another of the DSP’s

interfaces to connect the sensors and controls would be a good idea. This

avoids altering the core thermostat hardware that has already been proven to

function properly. Also, this provides increased reliability. Unlike the core

hardware that can be placed in a case, the sensors and controls would be

strung around the building. The DSP still has a buffered serial port and a

time-division serial port available (Texas Instruments 1.4). Only the DSP

will control the sensors and controls, thus the time-division serial port is

inappropriate.

One set of products that show potential are Dallas

Semiconductor’s 1-wire, line–powered “MicroLAN” series of switches, digital

temperature sensors, and other items such as real time clocks. There web site

is http://www.dalsemi.com. The advantage of “MicroLAN” is that it only uses

one wire to transfer information (Dallas Semiconductor Application Note 104:

Minimalist Temperature Control Demo). This reduces wiring. Conceivably, a

set of only four wires would be needed to run around the building. One wire

would be used as the ground for the “MicroLAN” devices. Another wire would be

used as the data line for the “MicroLAN” devices. “MicroLAN” devices also use

the data line as its power line. The other two wires would be used for the

window motors. This scheme separates the ground of the motors from the ground

35

of the “MicroLAN”. When motors start and stop, the voltage that appears

across them fluctuates. This is acceptable for the motors, but would corrupt

logic values for the “MicroLAN”. Another advantage is one wire is both

control and data which means there are no timing issues. Dallas Semiconductor

makes other serial products with 2-wire and three-wire interfaces. Those

products are not compatible with the DSP’s interface timing characteristics.

The consequence of having a one-wire interface is that the

protocol of the devices is relatively complex. To provide an easier design

solution, Dallas Semiconductor makes adapters/controllers that can connect

“MicroLAN” to the serial ports on computers, which are asynchronous. Using

such adapters might be difficult, since the DSP serial port’s design is

proprietary, synchronous, and is designed to connect to similar DSPs. Wiring

the “MicroLAN” directly to the DSP serial port could also be difficult.

Without an adapter, the DSP’s buffered serial port’s pin for output and pin

for input (Texas Instruments 9.33) would have to be wired to MicroLAN’s

single input/output wire. Tri-state buffers would need to control the

directions of signals. Fortunately, since there are no hardware timing

issues, software could emulate the “MicroLAN” signals by using the continuous

mode of the DSP serial port (Texas Instruments 9.25).

If the Center for Regenerative Studies ever decides to fund this

thermostat, the “C language” compiler for TMS320C54x could be purchased. With

the “C language”, most computer scientists could program the temperature

management routines of the thermostat as needed without being familiar with

the hardware. This is the theoretical part of the thermostat, and would

require a term of trial and error. Other students could possibly make parts

of the thermostat, in their projects. I could finish designing many of the

hardware control routines and provide function headers for linking to “C

language” code to minimize the need to know the thermostat’s hardware design

for other students. A student who specializes in network protocols could

36

write the code to emulate the “MicroLAN” signals. A student who specializes

in artificial intelligence could design the temperature management of the

thermostat. Due to the need for such specialties, the student probably needs

to be graduate students.

37

APPENDIX A

PROJECT SOURCE CODES

Proposed Software – Main Body

; Diagnostic Thermostat Software
; This File was copied from a Texas Instruments sample file,
; and then altered by Michael Warner II.
;
; ~ in comments indicates continuation of comment from previous the line
;
; LED stores characters as ASCII ("23" = 01100010b 01100011b)
; RTC stores time values as packed BCD (23d = 0010 0011 b)
;
; ***
; File: FirstApp.ASM -> First Application program for the 'C54x DSKplus
;
; ***

 .width 80
 .length 55
 .title "Test input"

 .mmregs ;associate register names
 ;~with their address
 .setsect ".text", 0x500,0 ;loads program section
 .setsect "vectors", 0x180,0 ;loads interrupt vector table
 .setsect ".data", 0x700,1 ;loads data section

 .sect "vectors" ;beginning of interrupt vector table
 .copy "d:\personal\senior\vector~2.asm" ;copies from another file

 .data ;beggining of data section

; variables used as constants for DSP ouput
ledb .word ' '
ledt .word ':'
logic0 .word 0000h
logic1 .word 0001h
leds .word 000Ah ;initial command values for LED
rtcs .word 0097h ;initial command values for RTC
wdt .word 0001h ;RTC watchdog # of seconds

; variables
read1 .word 0000h
read2 .word 0000h
read3 .word 0000h
cursor .word 0040h

38

 .text

 pmst = #01a0h ; set up iptr
 sp = #0ffah ; init stack pointer.

 IMR = #0ffffh ;un-mask all interrupt

; initialization
 port(0070h) = *(leds) ;initialize LED commands
 port(00CCh) = *(logic0) ;set watchdog timer
 port(00CDh) = *(wdt) ;~to 1 second intervals
 port(00CBh) = *(rtcs) ;initialize RTC commands
 port(0040h) = *(logic0) ;turn off LED flashing
 port(0041h) = *(logic0) ;~
 port(0042h) = *(logic0) ;~
 port(0043h) = *(logic0) ;~
 port(0044h) = *(logic0) ;~
 port(0045h) = *(logic0) ;~
 port(0046h) = *(logic0) ;~
 port(0047h) = *(logic0) ;~

; infinite loop to keep DSP running
place
 goto place

; button interrupt service - visually indicate which button is pressed
KEYIN
 *(read3) = port(0001h) ;read data lines
 B = *(read3)
 B = B <<C -12 ;shift button data bits down
 B &= #000Fh ;clear extra bits
 B += #0030h ;add 30h to form ASCII character
 *(read3) = B
 port(007Fh) = *(read3) ;output chracter to LED
 return_enable ;end button interupt service

; RTC interrupt service - displaying the time
TIMEIN
 port(007Dh) = *(ledt) ;output colons to LED
 port(007Ah) = *(ledt) ;~

; displaying the hours
 *(read1) = port(0084h) ;read hours from RTC
 B = *(read1) ;copy for ones digit
 *(read1) &= #000Fh ;clear extra bits
 *(read1) += #0030h ;add 30h to form ASCII character
 B = B <<C -4 ;shift tens digit down four bits
 *(read2) = B ;copy for tens digit
 *(read2) &= #000Fh ;clear extra bits
 *(read2) += #0030h ;add 30h to form ASCII character
 port(0079h) = *(read1) ;output numbers to LED
 port(0078h) = *(read2) ;~

; displaying the minutes
 *(read1) = port(0082h) ;read minutes from RTC

39

 B = *(read1)
 *(read1) &= #000Fh
 *(read1) += #0030h
 B = B <<C -4
 *(read2) = B
 *(read2) &= #000Fh
 *(read2) += #0030h
 port(007Ch) = *(read1)
 port(007Bh) = *(read2)

; displaying the seconds
 *(read1) = port(0081h) ;read seconds from RTC
 B = *(read1)
 *(read1) &= #000Fh
 *(read1) += #0030h
 B = B <<C -4
 *(read2) = B
 *(read2) &= #000Fh
 *(read2) += #0030h
 port(007Fh) = *(read1)
 port(007Eh) = *(read2)

 return_enable ;end RTC interrupt service

 .end

40

Test Code – Interrupt Vector Table “Vectors~1.asm”

; Interrupt Vector Table for Thermostat Diagnostic Software
; This File was copied from a Texas Instruments sample file,
; and then altered by Michael Warner II.
;
; ~ in comments indicates continuation of comment from previous the line
;
; Only int0 and int1 are used by thermostat.
;
; ***
; File: VECTORS.ASM -> Vector Table for the 'C54x DSKplus 10.Jul.96
;
; ***
; The vectors in this table can be configured for processing external and
; internal software interrupts. The DSKplus debugger uses four interrupt
; vectors. These are RESET, TRAP2, INT2, and HPIINT.
; * DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER *
;
; All other vector locations are free to use. When programming always be sure
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.
;
;
;

.width 80

.length 55
 .title "Vector Table"

.mmregs ;associate register names
 ;~with their address

reset goto #80h ;00; RESET * DO NOT MODIFY IF USING DEBUGGER *
 nop
 nop
nmi return_enable ;04; non-maskable external interrupt

nop
nop
nop

trap2 goto #88h ;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *
 nop
 nop
 .space 52*16 ;0C-3F: vectors for software interrupts 18-30

; Points to RTC routine.
int0 goto KEYIN ;40; external interrupt int0

nop
nop
nop

; Points to button routine.
int1 goto TIMEIN ;44; external interrupt int1

nop
nop
nop

41

int2 return_enable ;48; external interrupt int2

nop
nop
nop

tint return_enable ;4C; internal timer interrupt
nop
nop
nop

brint return_enable ;50; BSP receive interrupt
nop
nop
nop

bxint return_enable ;54; BSP transmit interrupt
nop
nop
nop

trint return_enable ;58; TDM receive interrupt
 nop
 nop
 nop
txint return_enable ;5C; TDM transmit interrupt
 nop
 nop
int3 return_enable ;60; external interrupt int3

nop
nop
nop

hpiint dgoto #0e4h ;64; HPIint * DO NOT MODIFY IF USING
DEBUGGER *
 nop
 nop
 .space 24*16 ;68-7F; reserved area

42

Proposed Software – Main Body

; Proposed Thermostat Software
; This File was copied from a Texas Instruments sample file,
; and then altered by Michael Warner II.
;
; ~ in comments indicates continuation of comment from previous the line
;
; ***
; File: FirstApp.ASM -> First Application program for the 'C54x DSKplus
;
; ***

 .width 80
 .length 55
 .title "Test input"

 .mmregs ;associate register names
 ;~with their address
 .setsect ".text", 0x500,0 ;loads program section
 .setsect "vectors", 0x180,0 ;loads interrupt vector table
 .setsect ".data", 0x700,1 ;loads data section

 .sect "vectors" ;beginning of interrupt vector table
 .copy "d:\personal\senior\Code\Vectors.asm"
 ;copies from another file

 .data
;spoint .word 0 ;points to current temperature setting
;sched .word 0,0
;10 temperature settings (day,hour,minute)

curtemp .word 0070h
curtime .word 0,0,0,0,0 ;(day, hour 10s/1s, minute 10s/1s)
curdspl .word 0,0,0,0,0,0,0,0 ;eight LED characters
curkey .word 0000h ;current key read
curflsh .word 0000h ;current flash locations
curpos .word 0000h ;current cursor position
 ;~(each bit = LED character position)

; LED values
ledb .word ' ' ;variables used as constants for output
ledc .word ':' ;~
ledinit .word 000Ah ;initial command values for LED
daydd .word 'S','u','M','o','T','u','W','e','T','h','F','r','S','a'

; RTC values
rtcinit .word 0097h ;initial command values for RTC
rtckey .word 0050h ;RTC watchdog # of .01 seconds for key read
rtctick .word 0060h ;RTC watchdog # of seconds for time update
rtcstr .word 0041h
rtcintm .word 0000h ;RTC watchdog interrupt context
 ;~(1 = real-time, 2 = key rate)

; variables used as constants for DSP output

43

logic0 .word 0000h
logic1 .word 0001h

; variables
read1 .word 0000h
read2 .word 0000h
read3 .word 0000h

 .text

;Initialization BEGIN

; Initialize DSP BEGIN
 pmst = #01a0h ;set up iptr
 sp = #0ffah ;init stack pointer.
 imr = #0ffffh ;enable all interrupts
 intm = #0001h ;globally disable interrupts for now
; Initialize DSP END

; Initialize LED BEGIN
 port(0070h) = *(ledinit) ;set LED settings

 port(0040h) = *(logic0) ;clear flashing
 port(0041h) = *(logic0) ;~
 port(0042h) = *(logic0) ;~
 port(0043h) = *(logic0) ;~
 port(0044h) = *(logic0) ;~
 port(0045h) = *(logic0) ;~
 port(0046h) = *(logic0) ;~
 port(0047h) = *(logic0) ;~

 port(0078h) = *(ledb) ;blank LED
 port(0079h) = *(ledb) ;~
 port(007Ah) = *(ledb) ;~
 port(007Bh) = *(ledb) ;~
 port(007Ch) = *(ledb) ;~
 port(007Dh) = *(ledb) ;~
 port(007Eh) = *(ledb) ;~
 port(007Fh) = *(ledb) ;~
; Initialize LED END

; Initialize RTC BEGIN
 port(00CCh) = *(logic0) ;set watchdog interval
 port(00CDh) = *(rtctick) ;~to 60.00 seconds
 port(00C9h) = *(rtcstr) ;start RTC's clock
 *(rtcintm) = #0001h ;set watchdog context to real time
 *(read1) = port(0082h) ;set RTC to 24 hour time
 *(read1) &= #00BFh ;~
 port(00C2h) = *(read1) ;~
 port(00CBh) = *(rtcinit) ;enable watchdog on intA
; Initialize RTC END

 intm = 0 ;ready to receive interrupts

;Initialization END
;==
;Decision Mode BEGIN

44

; infinite loop to keep DSP running
dm1 nop
 goto dm1
; Temperature prediction
;Decision Mode END
;--
;Menu Mode BEGIN
; THIS PROCEDURE IS NOT FUNCTIONAL.
; NON-UNDERSTANDABLE PARTS WERE BEING CHANGED FOR DEBUGGING.
KEYIN
; back-up registers contents
 AR7 = B
 push(AR7)
 AR7 = A
 push(AR7)

; change from clock read mode to key read mode
 port(00CCh) = *(rtckey) ;set watchdog interval
 port(00CDh) = *(logic0) ;~to 00.50 seconds for key rate
 *(rtcintm) = #0002h ;set watchdog context to key rate

 *(curkey) = #0000h
 *(curpos) = #0007h
ki1
 B = *(curkey)
 B -= #0001h
 if (bneq) goto ki2
 A = *(curpos)
 A -= #0007h
 if (aeq) goto ki2
 *(curpos) += #0001h
 *(curkey) = #0000h
 call chnpos
 call toled
ki2
 B = *(curkey)
 B -= #0002h
 if (bneq) goto ki3
 A = *(curpos)
 if (aeq) goto ki3
 *(curpos) -= #0001h
 *(curkey) = #0000h
 call chnpos
 call toled

;
ki3 B = *(curkey)
 B -= #0004h
 if (bneq) goto ki1
 goto ki4

 goto ki1
ki4
; change from key read mode to clock read mode
 *(rtcintm) = #0001h ;set watchdog context to real time
 port(00CCh) = *(logic0) ;set watchdog interval back
 port(00CDh) = *(rtctick) ;~to 60.00 seconds for real time

45

; restore register contents
 AR7 = pop()
 A = AR7
 AR7 = pop()
 B = AR7
 return_enable
;Menu Mode END
;---
; Control Mode BEGIN
; Thermometers and relays control main procedure goes here.
; Control Mode END
;Decision Procedures===============================
; Time Update BEGIN
timeupd
; back-up registers contents
 AR7 = B
 push(AR7)

; update day of week
 *(curtime) = port(0086h) ;read day from RTC
 *(curtime) &= #000Fh ;clear extra bits and store

; update hour of day
 *(curtime + 2) = port(0084h) ;read hour fromRTC
 B = *(curtime + 2) ;copy for ones digit
 *(curtime + 2) &= #000Fh ;clear extra bits and store
 B = B <<C -4 ;shift tens digit down four bits
 *(curtime + 1) = B ;copy for tens digit
 *(curtime + 1) &= #000Fh ;clear extra bits and store

; update minute of hour
 *(curtime + 4) = port(0082h)
 B = *(curtime + 4)
 *(curtime + 4) &= #000Fh
 B = B <<C -4
 *(curtime + 3) = B
 *(curtime + 3) &= #000Fh

; restore register contents
 AR7 = pop()
 B = AR7
 return
; Time Update END
;--
; Display Time BEGIN
distime
; back-up registers contents
 AR7 = B
 push(AR7)

; find string for current day
 B = #daydd ;get address of string list of days
 B -= #0002h ;get address of today's characters
 B += *(curtime) ;~
 B += *(curtime) ;~
 AR7 = B

46

; copy string to DSP's display space
 B = *AR7+
 *(curdspl) = B
 B = *AR7
 *(curdspl + 1) = B

; copy hours and minutes to DSP's display space
 data(curdspl + 2) = *(ledb) ;blank
 data(curdspl + 3) = *(curtime + 1) ;hours tens
 *(curdspl + 3) += #0030h ;convert to ASCII
 data(curdspl + 4) = *(curtime + 2) ;hours one
 *(curdspl + 4) += #0030h
 data(curdspl + 5) = *(ledc) ;":"
 data(curdspl + 6) = *(curtime + 3) ;minutes tens
 *(curdspl + 6) += #0030h
 data(curdspl + 7) = *(curtime + 4) ;minutes ones
 *(curdspl + 7) += #0030h

; restore register contents
 AR7 = pop()
 B = AR7
 return
; Display Time END
;Menu Procedures===================================
; Key Read BEGIN
; THIS SUBROUTINE IS NOT FUNCTIONAL.
; NON-UNDERSTANDABLE PARTS WERE BEING CHANGED FOR DEBUGGING.
keyrd
 *(curkey) = port(0001h) ;port address is a dummy
 B = *(curkey) ;keys are the highest 4 bits
 B = B <<C -12 ;~of the 16 bit data line
 B &= #000Fh ;cleared unused bits
 B ^= #0FFFFh ;invert
 *(curkey) = B

 return
; Key Read END

; Change Position BEGIN
chnpos
; backup register contents
 AR7 = B
 push(AR7)
 AR7 = A
 push(AR7)

 B = *(curpos)
 A = #0080h
 *(curflsh) = #0000h
cp1
 if (beq) goto cp2
 B += #0001h
 A = A <<C -1
 goto cp1
 *(curflsh) = A
cp2

47

; restore register contents
 AR7 = pop()
 A = AR7
 AR7 = pop()
 B = AR7
 return
; Change Position END
;Control Procedures==================================
; Thermometers and relays control subroutines go here.
;General Procedures==================================
; RTC Watchdog Interrupt BEGIN
TIMEIN
; backup register contents
 AR7 = B
 push(AR7)

 B = *(rtcintm) ;read the RTC watchdog interrupt context
 B = B <<C -1
 if (bneq) goto ti1 ;if context was not real-time
 call timeupd ;update DSP's copy of time
 call distime ;copy time to DSP's display space
 call toled ;update LED contents
 goto ti2
ti1 call keyrd ;read buttons

; restore register contents
ti2 AR7 = pop()
 B = AR7
 Return_enable
; RTC Watchdog Interrupt END
;---
; Transfer to LED BEGIN
toled:
; backup register contents
 AR7 = B
 push(AR7)

; set LED flashing according to cursur position
 B = *(curflsh) ;read cursor position

 B = B <<C -1
 if (c) goto ttl1 ;if cursor is position 1
 port(0040h) = *(logic0) ;clear flashing at position 1
 goto ttl2
ttl1 port(0040h) = *(logic1) ;set flashing at position 1
ttl2
 B = B <<C -1
 if (c) goto ttl3 ;if cursor is position 2
 port(0041h) = *(logic0)
 goto ttl4
ttl3 port(0041h) = *(logic1)
ttl4
 B = B <<C -1
 if (c) goto ttl5 ;if cursor is position 3
 port(0042h) = *(logic0)
 goto ttl6
ttl5 port(0042h) = *(logic1)

48

ttl6
 B = B <<C -1
 if (c) goto ttl7 ;if cursor is position 4
 port(0043h) = *(logic0)
 goto ttl8
ttl7 port(0043h) = *(logic1)
ttl8
 B = B <<C -1
 if (c) goto ttl9 ;if cursor is position 5
 port(0044h) = *(logic0)
 goto ttl10
ttl9 port(0044h) = *(logic1)
ttl10
 B = B <<C -1
 if (c) goto ttl11 ;if cursor is position 6
 port(0045h) = *(logic0)
 goto ttl12
ttl11 port(0045h) = *(logic1)
ttl12
 B = B <<C -1
 if (c) goto ttl13 ;if cursor is position 7
 port(0046h) = *(logic0)
 goto ttl14
ttl13 port(0046h) = *(logic1)
ttl14
 B = B <<C -1
 if (c) goto ttl15 ;if cursor is position 8
 port(0047h) = *(logic0)
 goto ttl16
ttl15 port(0047h) = *(logic1)

; copy from DSP's display space to LED
ttl16
 port(0078h) = *(curdspl)
 port(0079h) = *(curdspl + 1)
 port(007Ah) = *(curdspl + 2)
 port(007Bh) = *(curdspl + 3)
 port(007Ch) = *(curdspl + 4)
 port(007Dh) = *(curdspl + 5)
 port(007Eh) = *(curdspl + 6)
 port(007Fh) = *(curdspl + 7)

; restore register contents
 AR7 = pop()
 B = AR7
 return
; Transfer to LED END

 .end

49

Proposed Code – Interrupt Vector Table “Vectors.asm”

; Interrupt Vector Table for Proposed Thermostat Software
; This File was copied from a Texas Instruments sample file,
; and then altered by Michael Warner II.
;
; ~ in comments indicates continuation of comment from previous the line
;
; Only int0 and int1 are used by thermostat.
;
; ***
; File: VECTORS.ASM -> Vector Table for the 'C54x DSKplus 10.Jul.96
;
; ***
; The vectors in this table can be configured for processing external and
; internal software interrupts. The DSKplus debugger uses four interrupt
; vectors. These are RESET, TRAP2, INT2, and HPIINT.
; * DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER *
;
; All other vector locations are free to use. When programming always be sure
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.
;
;
;
 .width 80
 .length 55
 .title "Vector Table"
 .mmregs ;associate register names
 ;~with their address

reset goto #80h ;00; RESET * DO NOT MODIFY IF USING DEBUGGER *
 nop
 nop
nmi return_enable ;04; non-maskable external interrupt

nop
nop
nop

trap2 goto #88h ;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *
 nop
 nop
 .space 52*16 ;0C-3F: vectors for software interrupts 18-30

; Points to button routine
int0 goto KEYIN ;40; external interrupt int0

nop
nop

; Points to RTC routine
int1 goto TIMEIN ;44; external interrupt int1

nop
nop

int2 return_enable ;48; external interrupt int2

50

nop
nop
nop

tint return_enable ;4C; internal timer interrupt
nop
nop
nop

brint return_enable ;50; BSP receive interrupt
nop
nop
nop

bxint return_enable ;54; BSP transmit interrupt
nop
nop
nop

trint return_enable ;58; TDM receive interrupt
 nop
 nop
 nop
txint return_enable ;5C; TDM transmit interrupt

nop
 nop
int3 return_enable ;60; external interrupt int3

nop
nop
nop

hpiint dgoto #0e4h ;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *
 nop
 nop
 .space 24*16 ;68-7F; reserved area

51

APPENDIX B

PROJECT DIAGRAMS

LEDRTCDSP
AddressData Control AddressData ControlAddressData Control

Buttons

Decoder

Address
In

Control

Address
Out

Figure 1: Block Diagram

52

INTB

CP

+5V

E

CS

A2

A1

A0

E3

E2

E1

Q7

Q6

Q5

Q2

Q1

Q0

Q4

Q3

74138

1
0

A15

A14

A13

A10

A9

A8

A12

A11

A7

A6

A5

A2

A1

A0

A4

A3

D15

D14

D13

D10

D9

D8

D12

D11

D7

D6

D5

D2

D1

D0

D4

D3

 _

R/W

IOSTRB

INT1

INT0

TMS320C542

D7

D6

D5

D2

D1

D0

D4

D3

A5

A2

A1

A0

A4

A3

INTA

W

R

E

DS1286

D7

D6

D5

D2

D1

D0

D4

D3

FE

A4

A1

A0

A3

A2

R

W

Reset

HDSP-2502

+5V

+5V

1
0

1
0

1
0

Figure 2: Logic Diagram

53

 Vcc

 GND

Vcc

 Vcc

 GND

Vcc

74AHCT14

 Vcc

 GND

Vcc

74AHCT08

 GND

 V
DD

VccVcc

 V
DD

 GND

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Y0 Y1 Y2 Y3 Y4 Y5

Y6A

B C G2A G2B G1 Y

74AHCT138

WE INTB

NC

INTA

SQW OE CE DQ7 DQ6 DQ5 DQ4

DQ3

DQ2DQ1DQ0A5 A4 A3 A2 A1 A0

DS1286

D7 D6

A0FL

D5

A1

D4

RST

D3 D2 D1 D0 RD CE

WRCLKCLSA2 A3 NC NC NC A4

HDSP-2502

NC NC

NC NC NC

D3 D5 D7 D9 D11 D13 D15

READY

SLCT ACK

CLKOUT HOLD D2 D4 D6 D8 D10 D12 D14 PE D0MP/MC

BIO D1BUSY

NC NC NC NC NC NCNCNC

A14 A12 A10 A8 A6 A4 A2 A0

A15 A13 A11 A9 A7 A5 A3 A1INT1 INT3 MCLK

HINT CLKIN

INT0 INT2 NMI

JP3

JP5

Power

Power

 Vcc

 GND

Vcc

74HC126

Vcc

IAQ HOLDA CLKMD2

HAS

 _
R/W IS IOSTRB

HRNW HRDY HCS CLKMD3 HPIENA HDS2 HDS1

RESET IACK XF CLKMD1 MSC MSTRB PS DSJP4

DATA BUS

ADDRESS BUS

Figure 3: Pin Diagram

54

DECI MAL OPEREATI ON MODE COMPONENT ADDRESSI NG HEX DESCRI PTI ON

A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 X X 0 0 0 000 Char act er 1 Read f r om t he LED' s

1 0 0 0 0 X X 0 0 1 001 Char act er 2 Fl ash RAM

2 0 0 0 0 X X 0 1 0 002 Char act er 3 (Bl i nki ng of Char act er s Cont r ol)

3 0 0 0 0 X X 0 1 1 003 Char act er 4

4 0 0 0 0 X X 1 0 0 004 Char act er 5

5 0 0 0 0 X X 1 0 1 005 Char act er 6

6 0 0 0 0 X X 1 1 0 006 Char act er 7

7 0 0 0 0 X X 1 1 1 007 Char act er 8

32 0 0 0 1 0 0 X X X 020 Read f r om t he LED' s UDC Addr ess Regi st er (UDC RAM Poi nt er)

40 0 0 0 1 0 1 0 0 0 028 Row 1 Read f r om t he LED' s

41 0 0 0 1 0 1 0 0 1 029 Row 2 UDC RAM

42 0 0 0 1 0 1 0 1 0 02A Row 3 (Cust om Char at er Memor y)

43 0 0 0 1 0 1 0 1 1 02B Row 4

44 0 0 0 1 0 1 1 0 0 02C Row 5

45 0 0 0 1 0 1 1 0 1 02D Row 6

46 0 0 0 1 0 1 1 1 0 02E Row 7

48 0 0 0 1 1 0 X X X 030 Read f r om t he LED' s Cont r ol Wor d Regi st er (Commands)

56 0 0 0 1 1 1 0 0 0 038 Char act er 1 Read f r om t he LED' s

57 0 0 0 1 1 1 0 0 1 039 Char act er 2 Char act er RAM

58 0 0 0 1 1 1 0 1 0 03A Char act er 3 (Di spl ay Memor y)

59 0 0 0 1 1 1 0 1 1 03B Char act er 4

60 0 0 0 1 1 1 1 0 0 03C Char act er 5

61 0 0 0 1 1 1 1 0 1 03D Char act er 6

62 0 0 0 1 1 1 1 1 0 03E Char act er 7

63 0 0 0 1 1 1 1 1 1 03F Char act er 8

64 0 0 1 0 X X 0 0 0 040 Char act er 1 Wr i t e t o t he LED' s

65 0 0 1 0 X X 0 0 1 041 Char act er 2 Fl ash RAM

66 0 0 1 0 X X 0 1 0 042 Char act er 3 (Bl i nki ng of Char act er s Cont r ol)

67 0 0 1 0 X X 0 1 1 043 Char act er 4

68 0 0 1 0 X X 1 0 0 044 Char act er 5

69 0 0 1 0 X X 1 0 1 045 Char act er 6

70 0 0 1 0 X X 1 1 0 046 Char act er 7

71 0 0 1 0 X X 1 1 1 047 Char act er 8

96 0 0 1 1 0 0 X X X 060 Wr i t e t o t he LED' s UDC Addr ess Regi st er (UDC RAM Poi nt er)

104 0 0 1 1 0 1 0 0 0 068 Row 1 Wr i t e t o t he LED' s

105 0 0 1 1 0 1 0 0 1 069 Row 2 UDC RAM

106 0 0 1 1 0 1 0 1 0 06A Row 3 (Cust om Char at er Memor y)

107 0 0 1 1 0 1 0 1 1 06B Row 4

108 0 0 1 1 0 1 1 0 0 06C Row 5

109 0 0 1 1 0 1 1 0 1 06D Row 6

110 0 0 1 1 0 1 1 1 0 06E Row 7

112 0 0 1 1 1 0 X X X 070 Wr i t e t o t he LED' s Cont r ol Wor d Regi st er (Commands)

120 0 0 1 1 1 1 0 0 0 078 Char act er 1 Wr i t e t o t he LED' s

121 0 0 1 1 1 1 0 0 1 079 Char act er 2 Char act er RAM

122 0 0 1 1 1 1 0 1 0 07A Char act er 3 (Di spl ay Memor y)

123 0 0 1 1 1 1 0 1 1 07B Char act er 4

124 0 0 1 1 1 1 1 0 0 07C Char act er 5

125 0 0 1 1 1 1 1 0 1 07D Char act er 6

126 0 0 1 1 1 1 1 1 0 07E Char act er 7

127 0 0 1 1 1 1 1 1 1 07F Char act er 8

Figure 4: LED address

Figures 4,5,6,7: I/O Address Map with Data Descriptions

55

DESCRI PTI ON

D7 D6 D5 D4 D3 D2 D1 D0

Char act er 1 Read f r om t he LED' s X X X X X X X Fl ash

Char act er 2 Fl ash RAM

Char act er 3 (Bl i nki ng of Char act er s Cont r ol)

Char act er 4

Char act er 5

Char act er 6

Char act er 7

Char act er 8

Read f r om t he LED' s UDC Addr ess Regi st er (UDC RAM Poi nt er) X X X X UDC number (0 t o 15)

Row 1 Read f r om t he LED' s X X X Dot Dat a

Row 2 UDC RAM

Row 3 (Cust om Char at er Memor y)

Row 4

Row 5

Row 6

Row 7

Read f r om t he LED' s Cont r ol Wor d Regi st er (Commands) Cl ear St ar t Test Test f l ag Bl i nki ng Fl ash Br i ght ness

Char act er 1 Read f r om t he LED' s UDC/ ASCI I UDC don' t car e or Char act er # UDC # or Char act er #

Char act er 2 Char act er RAM

Char act er 3 (Di spl ay Memor y)

Char act er 4

Char act er 5

Char act er 6

Char act er 7

Char act er 8

Char act er 1 Wr i t e t o t he LED' s X X X X X X X Fl ash

Char act er 2 Fl ash RAM

Char act er 3 (Bl i nki ng of Char act er s Cont r ol)

Char act er 4

Char act er 5

Char act er 6

Char act er 7

Char act er 8

Wr i t e t o t he LED' s UDC Addr ess Regi st er (UDC RAM Poi nt er) X X X X UDC number (0 t o 15)

Row 1 Wr i t e t o t he LED' s X X X Dot Dat a

Row 2 UDC RAM

Row 3 (Cust om Char at er Memor y)

Row 4

Row 5

Row 6

Row 7

Wr i t e t o t he LED' s Cont r ol Wor d Regi st er (Commands) Cl ear St ar t Test Test f l ag Bl i nki ng Fl ash Br i ght ness

Char act er 1 Wr i t e t o t he LED' s UDC/ ASCI I UDC don' t car e or Char act er # UDC # or Char act er #

Char act er 2 Char act er RAM

Char act er 3 (Di spl ay Memor y)

Char act er 4

Char act er 5

Char act er 6

Char act er 7

Char act er 8

Figure 5: LED data

56

128 0 1 0 0 0 0 0 0 0 080 0. 01 Seconds Read f r om t he RTC' s

129 0 1 0 0 0 0 0 0 1 081 Seconds Cl ock, Cal ender ,

130 0 1 0 0 0 0 0 1 0 082 Mi nut es Ti me of Day Al ar m

131 0 1 0 0 0 0 0 1 1 083 Mi nut e Al ar m

132 0 1 0 0 0 0 1 0 0 084 Hour s

133 0 1 0 0 0 0 1 0 1 085 Hour Al ar m

134 0 1 0 0 0 0 1 1 0 086 Days

135 0 1 0 0 0 0 1 1 1 087 Day Al ar m

136 0 1 0 0 0 1 0 0 0 088 Dat es

137 0 1 0 0 0 1 0 0 1 089 Mont hs

138 0 1 0 0 0 1 0 1 0 08A Year s (Two Di gi t s)

139 0 1 0 0 0 1 0 1 1 08B Read f r om t he RTC' s Command Regi st er

140 0 1 0 0 0 1 1 0 0 08C 0. 01 Seconds Read f r om t he RTC' s

141 0 1 0 0 0 1 1 0 1 08D Seconds Wat chdog Al ar m

142 0 1 0 0 0 1 1 1 X 08E Read f r om t he RTC' s

144 0 1 0 0 1 X X X X 090 Gener al Use Memor y

192 0 1 1 0 0 0 0 0 0 0C0 0. 01 Seconds Wr i t e t o t he RTC' s

193 0 1 1 0 0 0 0 0 1 0C1 Seconds Cl ock, Cal ender ,

194 0 1 1 0 0 0 0 1 0 0C2 Mi nut es Ti me of Day Al ar m

195 0 1 1 0 0 0 0 1 1 0C3 Mi nut e Al ar m

196 0 1 1 0 0 0 1 0 0 0C4 Hour s

197 0 1 1 0 0 0 1 0 1 0C5 Hour Al ar m

198 0 1 1 0 0 0 1 1 0 0C6 Days

199 0 1 1 0 0 0 1 1 1 0C7 Day Al ar m

200 0 1 1 0 0 1 0 0 0 0C8 Dat es

201 0 1 1 0 0 1 0 0 1 0C9 Mont hs

202 0 1 1 0 0 1 0 1 0 0CA Year s (Two Di gi t s)

203 0 1 1 0 0 1 0 1 1 0CB Wr i t e t o t he RTC' s Command Regi st er

204 0 1 1 0 0 1 1 0 0 0CC 0. 01 Seconds Wr i t e t o t he RTC' s

205 0 1 1 0 0 1 1 0 1 0CD Seconds Wat chdog Al ar m

206 0 1 1 0 0 1 1 1 X 0CE Wr i t e t o t he RTC' s

208 0 1 1 0 1 X X X X 0D0 Gener al Use Memor y

≥256 1 X X X X X X X X 100 No Act i on

Figure 6: RTC and miscellaneous address

57

0. 01 Seconds Read f r om t he RTC' s Tent hs of seconds Hundr et hs of seconds

Seconds Cl ock, Cal ender , For ced 0 Tens of seconds Ones of seconds

Mi nut es Ti me of Day Al ar m For ced 0 Tens of mi nut es Ones of mi nut es

Mi nut e Al ar m Mask bi t Tens of mi nut es Ones of mi nut es

Hour s For ced 0 12hr / 24hr PM/ 20 hr 10 hr Ones of hour s

Hour Al ar m Mask bi t 12hr / 24hr PM/ 20 hr 10 hr Ones of hour s

Days For ced 0 Ones of days

Day Al ar m Mask bi t For ced 0 Ones of days

Dat es For ced 0 Tens of dat e Ones of dat e

Mont hs OSC Mask SQW Mask For ced 0 10 mont h Ones of mont hs

Year s (Two Di gi t s) Tens of year s Ones of year s

Read f r om t he RTC' s Command Regi st er Tr ansf er I nt pi n SWBhi / Bl o Pul se/ l evel 'WDA Mask ToDA Mask WDA f l ag ToDA f l ag

0. 01 Seconds Read f r om t he RTC' s Tent hs of seconds Hundr edt hs of seconds

Seconds Wat chdog Al ar m Tens of seconds Ones of seconds

Read f r om t he RTC' s

Gener al Use Memor y

0. 01 Seconds Wr i t e t o t he RTC' s Tent hs of seconds Hundr et hs of seconds

Seconds Cl ock, Cal ender , For ced 0 Tens of seconds Ones of seconds

Mi nut es Ti me of Day Al ar m For ced 0 Tens of mi nut es Ones of mi nut es

Mi nut e Al ar m Mask bi t Tens of mi nut es Ones of mi nut es

Hour s For ced 0 12hr / 24hr PM/ 20 hr 10 hr Ones of hour s

Hour Al ar m Mask bi t 12hr / 24hr PM/ 20 hr 10 hr Ones of hour s

Days For ced 0 Ones of days

Day Al ar m Mask bi t For ced 0 Ones of days

Dat es For ced 0 Tens of dat e Ones of dat e

Mont hs OSC Mask SQW Mask For ced 0 10 mont h Ones of mont hs

Year s (Two Di gi t s) Tens of year s Ones of year s

Wr i t e t o t he RTC' s Command Regi st er Tr ansf er I nt pi n SWBhi / Bl o Pul se/ l evel 'WDA Mask ToDA Mask WDA f l ag ToDA f l ag

0. 01 Seconds Wr i t e t o t he RTC' s Tent hs of seconds Hundr edt hs of seconds

Seconds Wat chdog Al ar m Tens of seconds Ones of seconds

Wr i t e t o t he RTC' s

Gener al Use Memor y

No Act i on

Figure 7: RTC and miscellanious data

58

APPENDIX C

MISCELLANEOUS DIAGRAMS

Strobe

A2

A1

A0

E1

Q7

Q6

Q5

Q2

Q1

Q0

Q4

Q3

DecoderDSP

Figure 8: Routing a Strobe

high impedance high impedanceData

Read/
write

enable

Chip

enable

Address

high

low

high

low

high

low

high

low

Figure 9: Read and Write Cycles of LED and RTC

59

high impedance high impedanceData

I/O

strobe

Read/

write

Address

high

low

high

low

high

low

high

low

Figure 10: Read and Write Cycles of DSP without Wait

high impedance high impedanceData

I/O

strobe

Read/

write

Address

high

low

high

low

high

low

high

low

Figure 11: Read and Write Cycles of DSP with Wait

60

RTC interrupt

key rate context
Return

Button

interrupt
Return

Software

interrupt

Return
RTC interrupt

real-time context

Decision

Mode

Menu

Mode

Control

Mode
load

(booting)

time update

Return

read button

Thermometers

and Relays

control

routines

(hardware

doesn't exist)

?

?

Figure 12: Hierarchy of Proposed Software

61

APPENDIX D

PROJECT PRESENTATION

Smart ThermostatSmart Thermostat

By Michael Warner II

A learning experience in basic

hardware/software system design

BackgroundBackground

� Wanting to do a practical project.

� Center for Regenerative Studies at

California State Polytechnic University,

Pomona

62

Project GoalsProject Goals

� STARTED AS:

– Create a thermostat with more control

intelligence than standard thermostats

– Aid the Center for Regenerative Studies

in their efforts .

� ENDED AS:

– Create the hardware of the thermostat

control unit and sample software that

illustrates the function of the hardware

components.

Comparative Analysis of DesignsComparative Analysis of Designs

� 7400 Microchips

– Strengths: inexpensive and well-known

functions

–Weaknesses: complex wiring and high

component count

� Programmable Microchips

– Strengths: programmable functions

–Weaknesses: wiring more complex than

DSP since more than one is needed

63

Comparative Analysis…,Comparative Analysis…, cont cont..

� Digital Signal Processors

– Strengths: simple wiring and low

component count (only one DSP is

needed)

–Weaknesses: functions are not well-

known

Design Decisions/ConceptsDesign Decisions/Concepts

� Transferring data between

components

– Tristate Buffers

� When to have DSP take input

– Polling versus Interrupts

64

Digital Signal ProcessorDigital Signal Processor

� Built-In Interrupt Controller

– Can handle more than one interrupt line

without extra wiring.

� Built-In Memory

– No need for external memory chips.

� Built-In I/O Components

– Parallel Bus: Is used for loading code from a

personal computer.

– Serial Bus: Can be used for a sensor and

control network.

Eight Character LED DisplayEight Character LED Display

� Built-in ASCII Decoder

– Give ASCII instead of a dot matrix pattern

� Eight Addressable Character Positions

– Reduce the need for a decoder

� Built-in Memory

– No need for flip-flops to store current display

� Blinking Function

– No need for software-driven blink sequence

for cursor.

65

Real Time ClockReal Time Clock

� Interrupt Output

– Provides a way for notifying DSP of time

events

� Built-in Battery

– Keeps accurate time even without

power.

� 50 Bytes of Nonvolatile Memory

– Could backup temperature readings.

Timing IssuesTiming Issues

� Simple Logic Circuits

� Synchronous Sequential Circuits

� Processors and Peripherals

66

Timing Issues,Timing Issues, cont cont.: .: DSPDSP

Timing Issues,Timing Issues, cont cont.: .: LED & RTCLED & RTC

67

Hardware LayoutHardware Layout

LEDRTCDSP

Decoder

InterruptInterruptAddressData Control AddressData ControlAddressData Control

Address

In

Control

Address

Out

Buttons

Diagnostic Software LayoutDiagnostic Software Layout

� Interrupt Vector Table

� Variables

� Initialize LED and RTC

� Infinite Loop

� Button Interrupt Service Routine

� RTC Interrupt Service Routine

68

Conclusion: KnowledgeConclusion: Knowledge

� What classes at ULV helped me

– CMPS 110, CMPN 220, CMPN 280: Boolean

logic, logic gates, tristate buffers, decoders,

basic digital circuit principles, hands-on wiring

– CMPS 365: pointers, stacks, queues, records

– CMPN 330: assembly language, assembly

segments

– CMPN 480: more assembly language,

programmable microchips

– CMPS 367: C++ notation (+=, *=, &=)

Conclusion: Knowledge, Conclusion: Knowledge, contcont..

� What I learn outside of classes

– A common interface of processors and

peripherals: timing relationships,

different types of lines

– Interrupts: (pin, register, vector table,

service routines)

– How to read different types of technical

diagrams

–Wire-wrapping

69

WORKS CITED

Adcock, Tomothy A. "What Is Fuzzy Logic? An Overview of the Latest
Control Methodology." Implementation of Fuzzy Logic, Selected
Applications. San Jose, California: Adobe Acrobat, 1992.

Burrows, Richard. Interviewed September 16, 1998. Pasadena, CA.

Dallas Semiconductor. Application Note 104: Minimalist Temperature

Control Demo. San Jose, California: Adobe Acrobat, 1999.

---. Ds1286 Watchdog Timekeeper. San Jose, California: Adobe Acrobat,

1998.

Deitel, H. M. and P. J. Deitel. C How to Program. Second ed. Englewood

Cliffs, NJ: Prentice Hall, 1994.

Forney, James S. Dos 5 Demystified. Blue Ridge Summit, PA: TAB Books,

1991.

Hantronix. "Commands for Character Modules." Character Modules. San

Jose, California: Adobe Acrobat, 1998. 45.

---. "Processor Interfacing." About Lcds (Tech Talk). San Jose,

California: Adobe Acrobat, 1998. 46.

Hennessy, John L. and David A. Patterson. Computer Organization and

Design: The Hardware/Software Interface. San Francisco, CA:
Morgan Kaufmann Publishers, Inc., 1994.

Hewlett Packard. Eight Character 5 Mm and 7 Mm Smart Alphanumeric

Displays: Technical Data. San Jose, California: Adobe Acrobat,
1998.

Intel. 8086 16-Bit Hmos Microprocessor: 8086/8086-2/8086-1. San Jose,

California: Adobe Acrobat, 1990.

Kernighan, Brian W. and Dennia M. Ritchie. The C Programming Language.

Prentice Hall Software Series. Second ed. Englewood Cliffs, NJ:
PTR Prentice Hall, 1988.

Korthof, William. Interviewed Spring 1998. Pomona, CA.

Mano, M. Morris. Computer System Architecture. Third ed. Englewood

Cliffs, NJ: Prentice-Hall, 1993.

---. Digital Design. Second ed. Englewood Cliffsw, NJ: Prentice-Hall,

1991.

Mazidi, Muhammad Ali. The 80x86 Ibm Pc & Compatible Computers, Volumes

I & Ii: Assembly Language, Design and Interfacing. Ed. Janice
Gillispie Mazidi. Engle Cliffs, NJ 07632: Prentice Hall, 1995.

Motorola Semiconductor. Mc146818 Technical Data. San Jose, California:

Adobe Acrobat, 1988.

70

Rizzoni, Giorgio. Principles and Applications of Electrical

Engineering. Second ed. Chicago, IL: Irwin, 1996.

Texas Instruments. Sn54ahct138, Sn74ahct138: 3-Line to 8-Line

Decoders/Demultiplexers. Adobe Acrobat: San Jose, CA, 1998.

---. Sn54ahct14, Sn74ahct14 Hex Schmitt-Trigger Inverters. Adobe

Acrobat: San Jose, CA, 1998.

---. "Tms320c54x Assembly Language Tools User's Guide.". 1997 ed.

Owensville, Missouri: Cusom Printinng Company, 1998.

---. "Tms320c54x Dskplus User's Guide: Dsp Starter Kit.". 1996 ed.

Owensville, Missouri: Custom Printinng Company, 1997.

---. Tms320c54x Dsp Reference Set: Algebraic Instruction Set. 1997 ed.

Vol. 3. 4 vols. Owensville, Missouri: Cusom Printinng Company,
1997.

---. Tms320c54x Dsp Reference Set: Cpu and Peripherals. 1997 ed. Vol.

1. 4 vols. Owensville, Missouri: Cusom Printinng Company, 1997.

---. Tms320c54x Dsp Reference Set: Mnemonic Instruction Set. 1997 ed.

Vol. 2. 4 vols. San Jose, California: Adobe Acrobat, 1997.

---. Tms320c54x Optimizing C Compiler User’S Guide. San Jose,

California: Adobe Acrobat, 1999.

